RIO: Flexible Real-time Robot I/O for
Cross-Embodiment Robot Learning

Author Names Omitted for Anonymous Review. Paper-ID 928

input /

policy

n obs n act

sensor state

sensor settings

teleop state teleop cmd

2%

single arm

o

!::! ﬁi‘ cmd
i

humanc

teleop2 state teleop2 cmd

arm state arm joints
gripper state gripper pos
arm2 state

arm2 joints

gripper2 state gripper2 pos

humanoid state humanoid joints

/ output

data

|

Fig. 1: RIO. We introduce a framework for flexible real-time Robot I/O (RIO) for cross-embodiment robot learning. RIO
provides lightweight Python-based hardware drivers to coordinate diverse robot morphologies, sensors, teleoperation interfaces,

and policies in a full-stack manner.

Abstract—Despite recent efforts to collect multi-task or multi-
embodiment datasets, to design efficient recipes for training
Vision-Language-Action models (VLAs), and to showcase these
models on selected robot platforms, generalist robot capabilities
and cross-embodiment transfer remain largely elusive ideals.
This cross-embodiment robot learning paradigm remains lim-
ited by fragmented data-collection infrastructure, the lack of
standardization on versatile data formats, and the significant
engineering effort involved in reproducing hardware setups and
organizing multiple control stacks for quickly deploying models
on diverse robot platforms. As a result, most robot code tends
to be highly specific to the exact robot setup that the user
decided on, which adds major overhead when attempting to
reuse, recycle, or share artifacts between users. To bridge this
gap, we present Robot I/O (RIO), an open-source Python-based
framework that provides flexible, lightweight components for
robot control, teleoperation, data formatting, sensor configura-
tion, and policy deployment across diverse hardware platforms
and morphologies. RIO provides abstractions that enable users
to make any choice (robots, sensors, teleoperation interfaces,
middlewares, data formats, policies) and to switch between them,
with minimal reconfiguration effort. We validate RIO on VLA
deployment workflows across three morphologies (single-arm,
bimanual, humanoid) and four robot hardware platforms with
varying grippers and cameras. We showcase policy rollouts by
collecting teleoperated data to fine-tune state-of-the-art VLAs,
including 9.5 and GROOT, on household tasks such as pick-and-
place, folding, and bowl scrubbing. By open sourcing all our

efforts, we hope the wider robotics community can accelerate
their pace of robot learning on real-world robot hardware.

I. INTRODUCTION

Vision-language-action models (VLAs) have recently
emerged as a promising approach for training generalist robot
policies, leveraging large-scale datasets to learn broadly capa-
ble robot behaviors. Despite their potential, achieving cross-
embodiment generalization, the ability to transfer learned be-
haviors across different robot morphologies, remains a funda-
mental challenge. VLAs cannot be deployed out of the box on
new embodiments; successfully reproducing and running these
systems on new robots still demands substantial engineering
effort. This challenge, however, extends well beyond VLAs.

Robotics practitioners have long contended with the frag-
mentation inherent in the field. Varying morphologies, diverse
sensor configurations, heterogeneous hardware platforms, and
manufacturer-specific driver code collectively result in robot
infrastructure that is highly specific to a user’s particular setup.
This results in significant overhead when attempting to reuse
code, share datasets, or build on each others works. Existing
cross-embodiment datasets like Open X-Embodiment [36] are,
in practice, aggregations of many individual collection efforts
conducted across disparate infrastructure.

The cost of this fragmentation is growing. As robot hard-
ware becomes increasingly affordable, more platforms are
entering research labs and deployment settings. Yet the special-
ized nature of most robotics infrastructure means that each new
platform carries substantial integration overhead. Consider a
common scenario: a research team wishes to reproduce real-
world results released by another group. To use the original
control code, they would need to replicate the exact hardware
setup one-to-one, as in efforts like DROID [26]. If they instead
have a different robot arm, they face the burden of rewriting the
entire control stack from scratch, before even trying to adapt
any learned policies. This makes most robot learning hardware
code difficult to reuse, and switching between platforms far
harder than it should be.

What is the most important infrastructure for robot learning
to advance? Beyond large datasets, we believe that a lack
of flexible, reusable, accessible, and performant full-stack
robot infrastructure has been a critical barrier to cumulative
progress and collaboration within the field. Robot learning is
missing reusable building blocks for hardware with flexible
abstractions that have become standard in other areas of
machine learning. Just as specialized high-performance GPU
kernels within high-level auto-differentiation frameworks have
enabled the rapid development and iteration of neural net-
works, robotics requires analogous foundational components
for hardware and control that can be reliably shared, extended,
and built upon across the community.

In this paper, we present the following contributions:

i) We introduce RIO, a flexible real-time Robot I/O frame-
work for scalable cross-embodiment robot learning. RIO
does not aim to be a comprehensive solution for robot
learning, but rather a lightweight set of reusable building
blocks that can be quickly combined to deploy policies on
real robots, depending on each user’s needed configura-
tion. RIO is designed to be flexible, reusable, accessible,
and performant, with abstractions such that the user is
free to make any choice at each layer of the stack, and
to switch between them with minimal effort.

ii) We validate RIO for the VLA deployment workflow span-
ning diverse embodiments across single arm, bimanual,
and humanoid robots with different grippers and sensors.
This includes different robots, sensors, teleoperation in-
terfaces, middlewares, data formats, and policies.

iii) We demonstrate real-world deployment by collecting
teleoperated data to fine-tune state-of-the-art VLAs such
as g 5 and GROOT, on household tasks such as pick-and-
place, folding, and bowl scrubbing.

II. RELATED WORKS

A. Generalist robot policies

Recent advances in vision-language-action models
(VLAs) [6, 18, 4, 23, 40, 3] aim to leverage the robust
image-to-language alignment learned by internet-scale pre-
trained vision-language models (VLMs) [50, 17, 2, 1, 14] to
train generalist robot policies. VLAs adapt VLMs to predict

actions through imitation learning on robot datasets collected
via human teleoperation of robots, scaling foundational work
on imitation learning for visuomotor policy learning, such
as ALOHA [51] and Diffusion Policy [12]. Due to the
computational resources and data scale required, state-of-the-
art VLAs are predominantly trained by industry labs with
substantial infrastructure and engineering personnel. Open
source efforts have sought to reproduce and democratize
these results [44, 31, 39, 14, 27], providing fully open-source
implementations and model weights. However, a significant
limitation remains: current VLAs must in practice be fine-
tuned for each robot setup. Released VLA model checkpoints
are typically fine-tuned for specific embodiments, such as
the Franka arm from DROID [26] or the WidowX arm from
BridgeData V2 [42]. Consequently, end-users must either
reproduce the exact hardware setup used during training [43],
or undertake substantial engineering effort to implement their
own robot control stack, before even attempting to adapt
learned policies to their own platforms. In this work, we lower
this barrier by introducing a flexible cross-embodiment robot
control stack, validated on the VLA adaptation workflow and
deployed across diverse robot configurations.

B. Cross-embodiment robot data

The effectiveness of scaling VLAs depends on access to
large-scale robot demonstration data. Prior work has demon-
strated that scaling robot data across both task diversity and
robot embodiments [13, 45, 10, 16, 41, 47] shows promise at
training better generalist robot policies, and cross-embodiment
robot data may also enable learning directly from humans [25].
Training truly general robot policies requires diversity in both
tasks and embodiments. Open X-Embodiment [36] aggregates
60 datasets spanning over 1 million robot trajectories across
22 embodiments. However, the heterogeneous collection tech-
niques and sensor configurations across these datasets neces-
sitate substantial curation for effective policy training, such as
through filtering Ghosh et al. [18], Khazatsky et al. [26] or data
mixture re-weighting [22]. In this work, we aim to facilitate
the collection of high-quality cross-embodiment robot data, by
developing flexible and reusable robot infrastructure.

C. Robot control stacks

Over the years, many robot control stacks have emerged [34,
28, 15, 8, 53, 29, 35, 24, 19, 33, 11] that are capable of
cross-embodiment robot control. ROS [33] was developed to
facilitate system compartmentalization and distributed com-
munication. While this modular, distributed approach offers
benefits for complex robotic systems, it requires compounding
systems-level engineering to coordinate all modules together.
Furthermore, ROS presents a high barrier to entry for re-
searchers and practitioners new to robotics, as it requires
wrangling its complex configuration management and build
system. Despite this proliferation of frameworks, robot code
remains highly platform-specific. We attribute this to two
factors: first, most roboticists work with a single hardware plat-
form, which incentivizes writing vendor-specific code quickly

Table I: Comparison of cross-embodiment robot stacks. We compare various cross-embodiment robot stacks on the basis of
native platform support, at different layers of the robot learning pipeline, e.g., data-collection system support, robot hardware
support, middleware, data formats, and policy architecture support. For example, some stacks combine robot arm and robot
gripper drivers, making it difficult to use other end effectors on arms.

Framework Humanoids Bimanual Single arm Robot grippers Teleop Cameras Middleware(s) Data format(s) Policies
Ark [15] v v v X v v X: LCM X: Pickle v
LeRobot [8] v v v X v v X: Threads/gRPC! X: LeRobotDataset v/
ManiUniCon [53] X X v X v v X: Shm X : Zarr v
PAPRLE [29] v v v v v v X: ROS X Pickle n/a
PyRobot [35] X X v v v v X: ROS X : Pickle n/a
RCS [24] X X v v v v X: RPC X : Parquet v
RoBits [19] X v v v v v X: ZMQ X: NPZ/JSON n/a
UMI, DP [11, 12] X v v X v v X: Shm X Zarr X: DP
RIO (ours) v v v v v v Vv : any v : any v

LLeRobot uses Threads for hardware drivers and gRPC for asynchronous policy inference.

rather than abstractable solutions; second, existing frameworks
lack flexible abstractions at every layer of the stack to ensure
cross-embodiment robot code is easy to write in the first place.
As robot hardware becomes increasingly affordable [8, 51],
more platforms are entering research labs and deployment
settings. Hardware code released alongside Diffusion Policy
(DP) [12], later extended for cross-embodiment robot support
by UMI [11, 49], has found widespread adoption by robotics
researchers with numerous community forks. LeRobot [8] has
also found widespread adoption among the broader robotics
community. Its popularity stems in part from its support
for low-cost robot hardware along with Python-only imple-
mentations, which eliminates the need for complex build
systems such as ROS and multi-language dependencies. By
streamlining the development workflow, LeRobot has lowered
the barrier to deploying real-world robot systems and enabled a
wider range of practitioners to experiment with robot learning.
In Table I, we compare the flexibility of RIO to a variety of
existing cross-embodiment robot infrastructure, across every
layer of the robot learning stack. RIO offers a reusable Python-
based set of real-time robot infrastructure in a similar style
to LeRobot and DP/UMI, while supporting reconfigurability
at each layer to facilitate VLA deployment workflows across
diverse robot morphologies. RIO enables combinatorial config-
uration of robots, teleoperation devices, cameras, middlewares,
data formats, and policies, for maximum flexibility.

III. RoBOT I/0 (RIO)

RIO is a Python-based framework for flexible real-time
Robot I/0, with reusable components for robot control, teleop-
eration, data collection, and policy deployment across diverse
robot embodiments. Users are free to make any choices at
every layer of the stack (humanoid robots, robot arms, robot
grippers, teleoperation interfaces, cameras, middlewares, data
formats, policies) and to switch between them with minimal
effort for reconfigurability. See Table II for a detailed list of
currently supported hardware.

Figure 2 illustrates the overall system architecture of RIO.
Section III-A describes the Design Philosophy, Section I1I-B

Table II: Current hardware support (more incoming). RIO
provides flexibility across robot hardware (humanoid robots,
robot arms, robot grippers), teleop interfaces, cameras, and
middlewares for multi-process distributed communication.
These can be combined in any configuration depending on
the user’s hardware requirements.

Humanoid Robots
Robot Arms

Unitree G1, Booster T1

UFactory (xArm5/6/7, 850, Lite6), UR (UR5e,
UR7e), Franka (FR3, Panda), Kinova (Gen3),
SO-100/SO-101

UFactory Gripper, Franka Gripper, Robotiq Gripper
(2F-85/2F-140), DH-Robotics Gripper (AG-105-145)
Spacemouse, Gamepad, Keyboard, VR (Apple Vision
Pro, Meta Quest), Leader-Follower (GELLO), Phone

Robot Grippers

Teleop Interfaces

Cameras RealSense, ZED, UVC (Webcams, USB cameras),
iPhone (Record3D)
Middlewares Shared Memory, Thread, Portal, Zenoh, ZeroRpc

introduce the client-server Nodes abstraction and Middlewares
implementation for message passing, Section III-C outlines the
reconfigurable instantiation of Robot Stations, Section III-D
describes Teleoperation and Data Collection used to collect
real-world robot trajectories across multiple embodiments, and
Section III-E describes the implementation of asynchronous
Policy Inference to obtain smooth real-world rollouts with
observation/action chunking.

A. Design Philosophy

We describe the five design tenets of RIO: flexible, reusable,
accessible, performant, and consistent.

e Flexible. RIO is agnostic to each component and does not
make any locked-in choices. The user is free to choose
between options at every layer, and switch between them
with minimal effort.

e Reusable. RIO is composed of a lightweight set of
reusable building blocks, that can be quickly combined
and modified to support a user’s desired configuration.

e Accessible. RIO is lightweight to install and uses Python-
based hardware modules, with a command-line interface
over a single configuration file.

teleop obs E
teleop2 —_——y data —_— _— D
humanoid :
Nodes | it Main
Zini%per Process act (IO
e e o — — —
a— Tl
T T ! T T !
i Sensors Robots
Interfaces
r = A r = A r = N\
B mes I | < e ég g
p- - - \ N 1 .}/ s 7%= T > j X
— » | r-s— “ ‘ L f 9
e g 8 R — & L I r P 3 & |

Fig. 2: Architecture. High-level overview of the architecture of RIO. Every component of the stack is flexible, meaning that the
user is free to choose between different options (robots, sensors, teleoperation interfaces, middlewares, data formats, policies)

and switch between them, with minimal effort.

e Performant. RIO is fully capable of high-frequency real-
time robot control, and uses asynchronous policy infer-
ence to yield smooth robot trajectories.

o Consistent. RIO is designed to ensure consistent, scalable,
reproducible data collection and robot learning.

Despite the proliferation of different robot infrastructures
(Table I), most robot code has remained highly platform-
specific. We attribute this to two factors: first, most roboticists
work with a single hardware platform, which incentivizes
writing vendor-specific code quickly rather than developing
more abstract solutions; second, existing frameworks lack
flexible abstractions at every layer of the stack to ensure that
cross-embodiment robot code is easy to write in the first place.
We design RIO to share full-stack robot control code that can
be reconfigured and built upon by the community.

B. Nodes and Middlewares

Nodes for teleoperation interfaces, sensors, robots, and poli-

cies are implemented from the same template Node, requiring
minimal boilerplate to enable flexible, real-time I/O across
diverse hardware and deployment configurations.
Nodes. A Node dynamically inherits from a given Middleware
that automatically handles message passing. Factory func-
tions produce matched server-client Node pairs, for which its
dynamic parent class implements the specified Middleware.
Nodes support three execution patterns for publishing data and
handling requests:

1) Publish-only: pub () publishes data in the run loop.

2) Request-only: req () handles requests in the run loop.

3) Combined: pubreqg () publishes data and handles re-
quests in a single loop.

For patterns (1) and (2), the complementary operation can
be optionally run in a separate worker loop thread. For
example, pub () in the run loop with reqg() in a worker
loop thread, or vice versa. To implement a Node, the user
defines the relevant methods: a pub () implementation calls
ring_buffer.put (..) to publish data, while a req ()
implementation calls request_queue.get () to receive
and process requests. Published data flows through a ring
buffer that continuously streams state at a fixed frequency,
providing time-synchronized access to sensor readings, robot
poses, and other data. Requests flow through a queue that en-
ables asynchronous command communication, allowing mul-
tiple clients to send timestamped commands independently
and at arbitrary rates. For each, a server Nodes execute
“publish/request”, while a client Node automatically resolves
“subscribe/reply”. The user specifies example_data and
example_request in each Node definition, which are used
to infer buffer shapes and data types when initializing ring
buffers and request queues. Each Node exposes a public API
(defined via __api_), whose methods are automatically
wrapped for serialization on the server side and deserial-
ization on the client side, enabling transparent bidirectional
communication. Because Nodes are middleware-agnostic, they
can be paired with different middleware backends depend-
ing on deployment requirements. Process synchronization is
managed through ready and exit events that signal when
“publish/request” loops are ready or exited, ensuring that user
logic in the main process blocks until every Node has fully
initialized and that the process cleans up when it completes.

Middlewares. Nodes interact with Middleware through a
common interface, hiding transport-level details. For network-

based communication, middleware such as Zenoh or ZeroRpc
handles serialization and transport over TCP or IPC. For high-
throughput local communication, shared memory middleware
uses a SharedMemoryManager to allocate ring buffers and
request queues in shared memory, allowing zero-copy data
exchange between processes. The shared memory implemen-
tation runs the Node’s loops in a separate process and com-
municates buffer handles back to the parent through pipes,
enabling multiple processes to access the same underlying
memory regions without serialization overhead. Middlewares
can be interchanged depending on the user’s requirements.
For instance, switching to the Thread middleware can help
with debugging when orchestrating many Nodes on the same
computer, since running everything multi-threaded within one
process simplifies stack traces, breakpoints, and exception han-
dling compared to multi-process or networked deployments.
Alternatively, for embodiments such as mobile manipulator
robots that may not have a powerful onboard computer, the
user may use network-based middleware to communicate
between multiple machines.

C. Robot Stations

We aggregate the instantiation of all nodes that make
up an environment into a single station configuration
file. A robot station is instantiated through a composable
dataclass configuration that specifies the hardware topol-
ogy of the deployment, defining the set of robots, end
effectors, and sensors (e.g., {arm, gripper, arm2,
gripper2, wrist_camera, wrist_camera2} for a
bi-manual robot station). The effect is to simplify the main rou-
tine’s logic in robot control loops: a context manager initializes
all server Nodes with the specified middleware backend, while
client Nodes are started within nested context managers that
yield proxy objects for transparent communication. While the
nodes internally use the specified middleware, queues, and
ring buffers, the main routine interacts only with the APIs,
resulting in simple, Python-based code. This pattern enables
the same application logic to operate over arbitrary station
configurations without modification.

D. Teleoperation and Data Collection

Teleoperation. We design three teleoperation scripts to sup-
port data collection. The first one controls relative end-effector
poses (Keyboard, Phone, Gamepad, Spacemouse), and the
second maps absolute joint positions using a leader-follower
setup (ALOHA [51], GELLO [46]), for either single-arm or
bimanual tabletop robot arms. The third script uses wrist pose
retargeting from Apple Vision Pro [37] to control the upper-
body of a humanoid robot, similar to [20, 21]. These scripts do
not assume any particular hardware platform, so teleoperation
devices and robots can be swapped based on each user’s needs.
To ensure smooth teleoperation across devices and control
frequencies, we include interpolators and signal-processing
filters (e.g., low-pass filters). These can also be used during
policy inference to mitigate the effects of noisy actions.

Data collection. We define a recorder for logging robot
demonstrations. To ensure consistent data collection across
different hardware, we enforce standardized units: meters
for world coordinates and radians for angular measurements.
We adapt the RLDS-style format [38] to aggregate multiple
data streams into a unified state representation, as shown
in Figure 3. To support different robot platforms, we intro-
duces the concept of morphologies—abstract descriptions of a
robot’s structure, each defining its own set of state keys. Each
morphology overloads the observation field of the RLDS step
with its specific keys. This design standardizes state reporting
across platforms, regardless of the underlying hardware.

@dataclass
class Camera:

rgb: np.ndarray | None = None
depth: np.ndarray | None = None
meta: dict = field(default_factory=dict)

@dataclass
class Observation:

proprio: np.ndarray # Defaults to policy
— action space
cameras: dict[str, Cameral] =

— field(default_factory=dict)

@dataclass

class Step:
timestep: int | None
observation: Observation
instruction: str | None
action: np.ndarray | None
meta: dict None =

— field(default_factory=dict)

Fig. 3: Observation Schema. Standardized state reporting
across different client instances and embodiments.

One challenge with scaling robotic data collection is the
sheer storage required to manage it, given that a typical robot
demo consists of the internal state of the robot, as well as mul-
tiple camera streams (often including depth) and other relevant
sensors. Additionally, depending on the specific target learning
architecture, the data may need to be exported and processed
differently. To this end, we use RoboDM [9], a toolkit that
employs flexible compression schemes and streamlined file
structures, to efficiently record demos in a highly compressed,
lightweight format that is quick to save and load. For training
or finetuning, we encourage users to write minimal converters
so that the exported demos can directly integrate with their
intended dataloader format.

E. Policy Inference

Aside from providing lightweight building blocks for hard-
ware components, we also want to reduce the overhead needed
to swap between different policies. To reduce the challenge of
integrating robot policies into our control stack, we design a
high-level API for policies. For each policy, we only require
a lightweight interface to instantiate the policy, convert ob-
servations from a standardized format to the policy-specific
observation format, and run inference. We design a policy

Fig. 4: VLA manipulation trajectories. We showcase rollouts

on 7y 5 across 3 morphologies on 5 diverse tasks. This figure

showcases a frame of the policy rollout at 0%, 20%, 40%, 60%, 80%, and 100% task completion.

Table III: Policy deployment. We deploy state-of-the-art VLAs (7.5, GROOT N1.5) across 3 morphologies (single arm,
bimanual, humanoid), achieving >60% success across 20 trials on all tasks with finetuning on 50 teleoperated demonstrations.
Policy rollout times closely match human demonstrations, with an average slowdown of just 3.69s, and some tasks completing
faster than demonstrations. Asynchronous inference maintains high GPU utilization throughout execution, showing that RIO

efficiently saturates available compute.

Robot Poli Task Success Task Completion Demo RAM CPU GPU GPU
opo oney as Rate Time (s) Time (s) (GB) (%) Util (%) Mem (%)
xArm7 BC 7.5 Fold Shirt 92.5 41.96 4+ 1458 41.57 +£9.25 225 +£27 130+ 14 567 1.7 79.1 & 0.0
XArm7 BC 7.5 Place Can 95.0 16.08 £ 3.41 1446 200 248 =15 132 £ 14 546 £31 79.1 £0.1
SO-100 BC 7.5 Fold Cloth 60.0 27.50 £ 551 2243 £330 19.6 =05 14.1 £ 15 46.3 £ 100 78.6 £ 0.0
SO-100 BC 7.5 Scrub Bowl 64.0 40.33 4+ 1368 27.66 £ 522 19.7 £ 0.7 150 £ 22 52.0+ 48 78.6 £ 0.1
Unitree GI BC GROOT N1.5 Pick Box 95.0 9.07 £ 6.10 10.38 4= 4.04 252 4+ 0.1 26.6 £33 61.7 =47 33.8 £00
Unitree G1I RL PPO Navigate 100.0 31.27 £ 6.56 n/a 23.0 £ 01 103 +04 51£01 103 =+0.1
Booster T1 RL PPO Navigate 100.0 29.73 £ 4.49 n/a 226 £01 104 04 53 +02 104 +03

wrapper node that uses this API to directly instantiate policies
and asynchronously handle inference requests. By handling
inference requests directly through our middleware, we avoid
the additional overhead of a dedicated policy server. Addi-
tionally, we design a configurable, policy-agnostic, hardware-
agnostic inference script that queries the policy wrapper,
handles logic for continuously obtaining observations from
hardware, post-processes actions for smoothness, and sends
commands to hardware. This allows for seamless switching
between different policies and hardware.

IV. EVALUATION

We evaluate whether RIO can support the complete robot-
learning workflow, from teleoperated data collection through
to finetuning and deployment, across diverse embodiments.
Specifically, our experiments address the following questions
regarding RIO’s core functionalities:

o Is RIO performant for real-time policy deployment?
e Can RIO support data collection across diverse mor-
phologies that require different teleoperation interfaces?
e Does RIO enable effective deployment and benchmarking
of state-of-the-art VLAs across embodiments?
Experimental Setup. All evaluations are performed on the
same computer, equipped with NVIDIA GeForce RTX 4090
GPU, AMD Ryzen 7 5700X CPU, and 64 GB of RAM.

A. Policy Finetuning and Deployment

RIO targets two stages of the robot-learning pipeline: data
collection for fine-tuning and deployment. We adopt a bring-
your-own-training-stack approach: researchers collect demon-
strations with RIO, export them to their preferred training
format, and import the resulting weights back into RIO for
deployment. This ensures consistency between collection and
rollout while remaining agnostic to model architecture and
training infrastructure.

Fig. 5: Humanoid locomotion trajectories. We evaluate RL policies on both Unitree G1 (top) and Booster T1 (bottom),
humanoid robots from different manufacturers with different hardware drivers added to our stack. RIO is capable of high-

frequency real-time control for humanoid locomotion.

We validate this workflow across three morphologies
(single-arm, bi-manual, humanoid) and four platforms, training
two VLA policies (mg.5, GROOT N1.5) and two RL policies
(PPO for locomotion). For 7 5, we finetune' from the DROID
checkpoint for single-arm tasks and the ALOHA checkpoint
for bi-manual tasks, training for 20K steps in each case.
For GROOT, we use 150 demonstrations for the humanoid
manipulation task. All demonstrations are collected at 50Hz
and stored using a compressed format that can be exported
to target training pipelines; for reference, 150 episodes with
three camera views require only 1.31GB.

To verify policy integration, we report success-rate metrics

and compare the average task completion time with the
average demonstration time.
Single Arm Tabletop Manipulation. We use a UFactory
xArm7 with a Robotiq 2F-140 gripper and three RealSense
cameras to evaluate RIO’s. We collect data for two pick-and-
place tasks (place can in bin, folding a shirt) and two dynamic
tasks (hitting a ball with a paddle, and flipping a tortilla).

For pick-and-place, we employ both a Spacemouse and a
GELLO leader-follower interface. Empirically, end-effector-
space devices such as the Spacemouse yield cleaner demon-
strations for tasks where rotation is not a major factor. We
note that training VLAs with binary gripper actions yields poor
gripper control; we therefore apply trajectory interpolation and
low-pass filtering to smooth collected actions. As shown in
Table III, both tasks achieve success rates above 90%, with
completion times within 2 seconds of demonstration time.

For dynamic tasks, we use the GELLO interface to capture
complex motions. These tasks illustrate RIO’s ability to collect
data at high control rates (80Hz). Given that reliable dynamic
task performance from VLAs remains an open research ques-
tion, we only demonstrate teleoperation for these tasks.
Bi-manual Arm Tabletop Manipulation. We use SO-101
arms to evaluate RIO’s support for bi-manual coordination.
RIO natively supports robot-to-robot teleoperation; configur-
ing the leader arms as teleoperation devices requires only a
change to the station configuration file. We perform bi-manual

'We use one checkpoint per-task, per embodiment.

cloth folding and bowl scrubbing, in which the operator must
first grasp the objects before executing the task.

All bi-manual tasks achieve at least a 60% success rate.
When comparing task completion time, we observe a greater
departure from demonstration time than in the uni-manual
case, with an average difference of -8.87 seconds. In particular,
the scrub bowl task shows the largest difference. We empiri-
cally observe that this is not due to inference snags but rather
to errors in policy rollout that lead to retry behavior.

Humanoids. To demonstrate the flexibility of RIO, we also
validate that our system can perform high-frequency control
for humanoid locomotion on two humanoid robots from dif-
ferent vendors: Unitree G1 and Booster T1 (Figure 5).

B. Performance Analysis

We evaluate RIO’s real-time performance at two levels:
round-trip middleware latency and end-to-end latency under
realistic workload conditions.

Round-trip Middleware Latency. To establish an approx-
imate lower bound on RIO’s communication overhead, we
measure round-trip latency across all supported middlewares.
We follow Open Messaging Benchmark by defining latency
as half the median round-trip time, removing the 1st and
99th percentiles to improve robustness to outliers. We use
a synthetic 2048-byte payload, reflecting typical observation
sizes. This benchmark isolates middleware performance since
the main loop performs only ring buffer reads and writes.
Table IV shows results across 5 supported backends; Zenoh
and shared memory achieve sub-millisecond latency suitable
for high-frequency control, while thread-based and ZeroRpc
backends trade latency for simpler debugging or network
flexibility.

Table IV: Middleware latency. We report round-trip latency
across RIO’s supported middlewares, mean =+ stddev, averaged
across 1,000 passes with 2048 bytes payload. Network-based
backends (Zenoh, ZeroRpc) enable distributed multi-machine
deployments, while local options (Shared Memory, Threads)
minimize overhead for single-machine setups. This flexibility
allows balancing performance, distribution, and system com-
plexity depending on requirements.

Middleware Latency (ms)
ZeroRpc 10.3192 + 5.1707
Thread 5.0746 + 0.0318
Shared Memory 0.1462 + 0.0119
Zenoh 0.1227 4+ 0.1058

= Observation to Action Idle time

1
ARy

Tt0.5 Inference

0 50 100

Main Loop
(avg: 0.2ms)

Camera Stream

vg: 20.6ms)

Robot Controller
(avg: 0.7ms)

e

. 150 200 g
Time (ms)

Fig. 6: Node Profiling During Policy Deployment. RIO
distributes blocking operations (camera streaming, policy in-
ference, robot control) across separate nodes, keeping the
main loop free for precise timekeeping. We benchmark on a
realistic payload: 7 5 rollouts on an xArm?7 station with three
RealSense cameras streaming at 60Hz. Despite significant
inference latency (92ms), asynchronous action requests enable
continuous control without blocking on model forward passes.

Observation to action latency (ms)

A 31.9
pproximate
Overhead 1097
Observation 20.6
Fetching 190.6 -
Rio ‘
916 I Lerobot
Policy : J

Inference 286.3

Observation 144.2

to Action 586.7

100 200 300 00 500 600 700

Fig. 7: Observation-Action Latency. We measure end-to-
end latency from multi-camera observation to robot command
execution duration 7y 5 deployment. RIO achieves over 3x
lower latency than LeRobot, after accounting for differences
in inference time. This efficiency enables smoother policy
rollouts at higher control frequencies.

End-to-end profiling. To quantify performance under realistic
conditions, we profile RIO during 7y 5 rollouts, receiving
inputs from three Intel RealSense cameras (two D415s and
one D405) at 640 x 480 resolution. Section IV-B shows the
execution timeline across nodes. The main loop remains non-
blocking, allowing for precise time-keeping, with blocking
operations distributed to dedicated nodes. Asynchronous in-
ference allows the system to preemptively request actions,
maintaining continuous control despite the 92ms model for-
ward pass. We compare observation-to-action latency against
LeRobot, a widely adopted Python-based framework. Given
minimal overlap between the platforms supported by RIO and
LeRobot, we use a mock robot whose read/write operations
have a 1 ms block time; the camera setup is kept the same as in
previous tasks. As shown in Section IV-B, RIO achieves lower
latency across the different stages. When isolating communi-
cation overhead by excluding observation fetching and policy
inference, RIO outperforms the baseline with 3x lower latency.
This efficiency stems from its streamlined architecture: while
LeRobot introduces delays by threading observations before
network transmission to an asynchronous server, RIO directly
leverages the middleware for asynchronous inference.

V. CONCLUSION

The lack of flexible, reusable, accessible, performant, and
consistent full-stack robot infrastructure has proven to be
a critical barrier to cumulative progress and collaboration
in robotics. In this work, we present RIO, a flexible real-
time Robot I/O framework for cross-embodiment robot learn-
ing. RIO provides lightweight, middleware-agnostic building
blocks for robot control, teleoperation, data collection, and
policy deployment that can be freely combined and recon-
figured across diverse hardware platforms. We validate RIO
across the complete robot learning workflow, demonstrating
its effectiveness on three morphologies (single-arm, bimanual,
humanoid) and four robot platforms. We open-source RIO, and
hope that it will lower the barrier for robotics practitioners
to deploy, benchmark, and iterate on modern robot learning
approaches across diverse hardware configurations.

Limitations and future directions. In this work, we focus on
single-embodiment fine-tuning. Since cross-embodiment gen-
eralization remains an active area of research, we leave cross-
embodiment fine-tuning of VLAs to future work. Additionally,
while we demonstrate dynamic tasks through teleoperation,
reliable dynamic task performance by VLAs remains an open
research question that warrants further investigation. Future
directions include systematic benchmarking of distribution
shift across embodiments or extending support to include
other robot hardware such as mobile manipulators and multi-
fingered dexterous robot hands.

Realsense 4 R —
(DAD / (D405)
Realsense
Gello E E ‘letsl
or

Gripper

Space ‘ Robotiq

Mouse . (ERXD)
s

«— Logitech (€920

2% 50-100 ooy S
(leader) (1os0m Innomaker
(1080P)
50-100

-
2x Gellos

Fig. 8: Example robot stations. We illustrate single arm and
bimanual robot stations with different cameras, controlled with
different teleoperation interfaces, using RIO.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang,
Jun Tang, et al. Qwen2. 5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Lucas Beyer, Andreas Steiner, André Susano Pinto,
Alexander Kolesnikov, Xiao Wang, Daniel Salz, Maxim
Neumann, Ibrahim Alabdulmohsin, Michael Tschannen,
Emanuele Bugliarello, et al. Paligemma: A versatile 3b
vlm for transfer. arXiv preprint arXiv:2407.07726, 2024.
Johan Bjorck, Fernando Castafieda, Nikita Cherniadev,
Xingye Da, Runyu Ding, Linxi Fan, Yu Fang, Dieter Fox,
Fengyuan Hu, Spencer Huang, et al. GrOOt nl: An open
foundation model for generalist humanoid robots. arXiv
preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Es-
mail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy
Groom, Karol Hausman, Brian Ichter, et al. w5 A
Vision-Language-Action Flow Model for General Robot
Control. arXiv preprint arXiv:2410.24164, 2024.

Kevin Black, Manuel Y Galliker, and Sergey Levine.
Real-Time Execution of Action Chunking Flow Policies.
arXiv preprint arXiv:2506.07339, 2025.

Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. Rt-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.
Herman Bruyninckx. Open robot control software: the
OROCOS project. In Proceedings 2001 ICRA. IEEE in-
ternational conference on robotics and automation (Cat.
No. 0ICH37164), volume 3, pages 2523-2528. IEEE,
2001.

Remi Cadene, Simon Alibert, Alexander Soare, Quentin
Gallouedec, Adil Zouitine, Steven Palma, Pepijn
Kooijmans, Michel Aractingi, Mustafa Shukor, Dana
Aubakirova, Martino Russi, Francesco Capuano, Car-
oline Pascal, Jade Choghari, Jess Moss, and Thomas
Wolf. Lerobot: State-of-the-art machine learning for real-
world robotics in pytorch, 2024. URL https://github.com/
huggingface/lerobot.

Kaiyuan Chen, Letian Fu, David Huang, Yanxiang
Zhang, Lawrence Yunliang Chen, Huang Huang, Kush
Hari, Ashwin Balakrishna, Ted Xiao, Pannag R Sanketi,
et al. Robo-DM: Data Management For Large Robot
Datasets. arXiv preprint arXiv:2505.15558, 2025.
Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai,
Yibin Liu, Zixuan Li, Qiwei Liang, Xianliang Lin, Yi-
heng Ge, Zhenyu Gu, et al. Robotwin 2.0: A scalable data
generator and benchmark with strong domain random-
ization for robust bimanual robotic manipulation. arXiv
preprint arXiv:2506.18088, 2025.

Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau,
Benjamin Burchfiel, Siyuan Feng, Russ Tedrake, and
Shuran Song. Universal Manipulation Interface: In-The-

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

Wild Robot Teaching Without In-The-Wild Robots. In
Robotics: Science and Systems, 2024.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau,
Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran
Song. Diffusion policy: Visuomotor policy learning via
action diffusion. The International Journal of Robotics
Research, 44(10-11):1684-1704, 2025.

Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair,
Bernadette Bucher, Karl Schmeckpeper, Siddharth Singh,
Sergey Levine, and Chelsea Finn. RoboNet: Large-Scale
Multi-Robot Learning. In Conference on Robot Learning,
pages 885-897. PMLR, 2020.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tri-
pathi, Yue Yang, Jae Sung Park, Mohammadreza Salehi,
Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al.
Molmo and pixmo: Open weights and open data for state-
of-the-art vision-language models. In Proceedings of the
Computer Vision and Pattern Recognition Conference,
pages 91-104, 2025.

Magnus Dierking, Christopher E Mower, Sarthak Das,
Huang Helong, Jiacheng Qiu, Cody Reading, Wei Chen,
Huidong Liang, Huang Guowei, Jan Peters, et al. Ark:
An Open-source Python-based Framework for Robot
Learning. arXiv preprint arXiv:2506.21628, 2025.

Ria Doshi, Homer Rich Walke, Oier Mees, Sudeep
Dasari, and Sergey Levine. Scaling Cross-Embodied
Learning: One Policy for Manipulation, Navigation, Lo-
comotion and Aviation. In Conference on Robot Learn-
ing, pages 496-512. PMLR, 2025.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch,
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, et al.
PalLM-E: an embodied multimodal language model. In
Proceedings of the 40th International Conference on
Machine Learning, pages 8469-8488, 2023.

Dibya Ghosh, Homer Rich Walke, Karl Pertsch, Kevin
Black, Oier Mees, Sudeep Dasari, Joey Hejna, Tobias
Kreiman, Charles Xu, Jianlan Luo, et al. Octo: An Open-
Source Generalist Robot Policy. In Robotics: Science and
Systems, 2024.

Markus Grotz, Mohit Shridhar, Tamim Asfour, and Di-
eter Fox. PerAct2: Benchmarking and Learning for
Robotic Bimanual Manipulation Tasks. arXiv preprint
arXiv:2407.00278, 2024.

Tairan He, Zhengyi Luo, Wenli Xiao, Chong Zhang, Kris
Kitani, Changliu Liu, and Guanya Shi. Learning human-
to-humanoid real-time whole-body teleoperation. In 2024
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 8944-8951. IEEE, 2024.
Tairan He, Zhengyi Luo, Xialin He, Wenli Xiao, Chong
Zhang, Weinan Zhang, Kris M Kitani, Changliu Liu,
and Guanya Shi. OmniH20O: Universal and Dexter-
ous Human-to-Humanoid Whole-Body Teleoperation and
Learning. In Conference on Robot Learning, pages 1516—
1540. PMLR, 2025.

Joey Hejna, Chethan Anand Bhateja, Yichen Jiang, Karl

https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2407.07726
https://arxiv.org/abs/2407.07726
https://arxiv.org/abs/2503.14734
https://arxiv.org/abs/2503.14734
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2506.07339
https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2212.06817
https://ieeexplore.ieee.org/document/933002
https://ieeexplore.ieee.org/document/933002
https://github.com/huggingface/lerobot
https://github.com/huggingface/lerobot
https://arxiv.org/abs/2505.15558
https://arxiv.org/abs/2505.15558
https://arxiv.org/abs/2506.18088
https://arxiv.org/abs/2506.18088
https://arxiv.org/abs/2506.18088
https://arxiv.org/abs/2402.10329
https://arxiv.org/abs/2402.10329
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/1910.11215
https://arxiv.org/abs/1910.11215
https://arxiv.org/abs/2409.17146
https://arxiv.org/abs/2409.17146
https://arxiv.org/abs/2506.21628
https://arxiv.org/abs/2506.21628
https://arxiv.org/abs/2506.21628
https://arxiv.org/abs/2408.11812
https://arxiv.org/abs/2408.11812
https://arxiv.org/abs/2408.11812
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2405.12213
https://arxiv.org/abs/2405.12213
https://arxiv.org/abs/2407.00278
https://arxiv.org/abs/2407.00278
https://arxiv.org/abs/2403.04436
https://arxiv.org/abs/2403.04436
https://arxiv.org/abs/2406.08858
https://arxiv.org/abs/2406.08858
https://arxiv.org/abs/2406.08858

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Pertsch, and Dorsa Sadigh. ReMix: Optimizing Data
Mixtures for Large Scale Imitation Learning. In Confer-
ence on Robot Learning, pages 145-164. PMLR, 2025.
Physical Intelligence, Kevin Black, Noah Brown, James
Darpinian, Karan Dhabalia, Danny Driess, Adnan Es-
mail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al.
mo.5:a Vision-Language-Action Model with Open-World
Generalization. arXiv preprint arXiv:2504.16054, 2025.
Tobias Jiilg, Pierre Krack, Seongjin Bien, Yannik Blei,
Khaled Gamal, Ken Nakahara, Johannes Hechtl, Roberto
Calandra, Wolfram Burgard, and Florian Walter. Robot
Control Stack: A Lean Ecosystem for Robot Learning at
Scale. arXiv preprint arXiv:2509.14932, 2025.

Simar Kareer, Karl Pertsch, James Darpinian, Judy Hoff-
man, Danfei Xu, Sergey Levine, Chelsea Finn, and
Suraj Nair. Emergence of Human to Robot Trans-
fer in Vision-Language-Action Models. arXiv preprint
arXiv:2512.22414, 2025.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ash-
win Balakrishna, Sudeep Dasari, Siddharth Karam-
cheti, Soroush Nasiriany, Mohan Kumar Srirama,
Lawrence Yunliang Chen, Kirsty Ellis, et al. DROID:
A large-scale in-the-wild robot manipulation dataset. In
Robotics: Science and Systems, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted
Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov,
Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al.
OpenVLA: An Open-Source Vision-Language-Action
Model. In Conference on Robot Learning, pages 2679—
2713. PMLR, 2025.

Vikash Kumar, Rutav Shah, Gaoyue Zhou, Vincent
Moens, Vittorio Caggiano, Abhishek Gupta, and Aravind
Rajeswaran. Robohive: A unified framework for robot
learning. Advances in Neural Information Processing
Systems, 36:44323-44340, 2023.

Obin Kwon, Sankalp Yamsani, Noboru Myers, Sean
Taylor, Jooyoung Hong, Kyungseo Park, Alex Alspach,
and Joohyung Kim. PAPRLE (Plug-And-Play Robotic
Limb Environment): A Modular Ecosystem for Robotic
Limbs. arXiv preprint arXiv:2507.05555, 2025.

Obin Kwon, Sankalp Yamsani, Noboru Myers, Sean
Taylor, Jooyoung Hong, Kyungseo Park, Alex Alspach,
and Joohyung Kim. Paprle: Plug-and-play robotic limb
environment: A modular ecosystem for robotic limbs.
IEEE Robotics & Automation Magazine, 2026.
Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan,
Huayu Chen, Zhengyi Wang, Ke Xu, Hang Su, and
Jun Zhu. RDT-1B: a Diffusion Foundation Model for
Bimanual Manipulation. In The Thirteenth International
Conference on Learning Representations, 2025.
Yunchao Ma, Yizhuang Zhou, Yunhuan Yang, Tiancai
Wang, and Haogiang Fan. Running vlas at real-time
speed. arXiv preprint arXiv:2510.26742, 2025.

Steven Macenski, Tully Foote, Brian Gerkey, Chris
Lalancette, and William Woodall. Robot operating sys-
tem 2: Design, architecture, and uses in the wild. Science

[34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

robotics, 7(66):eabm6074, 2022.

Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale.
Yarp: yet another robot platform. International Journal
of Advanced Robotic Systems, 3(1):8, 2006.
Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Al-
wala, Dhiraj Gandhi, Lerrel Pinto, Saurabh Gupta, and
Abhinav Gupta. Pyrobot: An open-source robotics frame-
work for research and benchmarking. arXiv preprint
arXiv:1906.08236, 2019.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Ab-
hishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn
Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain,
et al. Open x-embodiment: Robotic learning datasets
and rt-x models: Open x-embodiment collaboration O.
In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 6892-6903. IEEE, 2024.
Younghyo Park and Pulkit Agrawal. Using apple vision
pro to train and control robots, 2024. URL https://github.
com/Improbable- Al/VisionProTeleop.

Sabela Ramos, Sertan Girgin, Léonard Hussenot, Damien
Vincent, Hanna Yakubovich, Daniel Toyama, Anita
Gergely, Piotr Stanczyk, Raphael Marinier, Jeremiah
Harmsen, et al. Rlds: an ecosystem to generate, share
and use datasets in reinforcement learning. arXiv preprint
arXiv:2111.02767, 2021.

starVLA Community. StarVLA: A Lego-like Codebase
for Vision-Language-Action Model Developing, January
2026. URL https://github.com/starVLA/starVLA.
Gemini Robotics Team, Saminda Abeyruwan, Joshua
Ainslie, Jean-Baptiste Alayrac, Montserrat Gonzalez
Arenas, Travis Armstrong, Ashwin Balakrishna, Robert
Baruch, Maria Bauza, Michiel Blokzijl, et al. Gemini
robotics: Bringing ai into the physical world.
preprint arXiv:2503.20020, 2025.

RDT Team. Rdt2: Enabling zero-shot cross-embodiment
generalization by scaling up umi data, September 2025.
URL https://github.com/thu-ml/RDT2.

Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan
Vuong, Chongyi Zheng, Philippe Hansen-Estruch, An-
dre Wang He, Vivek Myers, Moo Jin Kim, Max Du,
et al. Bridgedata v2: A dataset for robot learning at
scale. In Conference on Robot Learning, pages 1723—
1736. PMLR, 2023.

J Wang, M Leonard, K Daniilidis, D Jayaraman, and

arXiv

ES Hu. Evaluating pi0 in the Wild: Strengths,
Problems, and the Future of Generalist Robot
Policies, 2025. URL https://penn-pal-lab.github.io/

pi0-Experiment-in-the- Wild.

Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin
Tang, Kun Wu, Zhiyuan Xu, Ning Liu, Ran Cheng,
Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient
vision-language-action models for robotic manipulation.
IEEE Robotics and Automation Letters, 2025.

Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che,
Xiaozhu Ju, Zhuqin Yang, Meng Li, Yinuo Zhao,
Zhiyuan Xu, Guang Yang, et al. Robomind: Benchmark

https://arxiv.org/abs/2408.14037
https://arxiv.org/abs/2408.14037
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2509.14932
https://arxiv.org/abs/2509.14932
https://arxiv.org/abs/2509.14932
https://arxiv.org/abs/2512.22414
https://arxiv.org/abs/2512.22414
https://arxiv.org/abs/2403.12945
https://arxiv.org/abs/2403.12945
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2507.05555
https://arxiv.org/abs/2507.05555
https://arxiv.org/abs/2507.05555
https://arxiv.org/abs/2410.07864
https://arxiv.org/abs/2410.07864
https://arxiv.org/abs/2211.07752
https://arxiv.org/abs/2211.07752
https://arxiv.org/abs/1906.08236
https://arxiv.org/abs/1906.08236
https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/2310.08864
https://github.com/Improbable-AI/VisionProTeleop
https://github.com/Improbable-AI/VisionProTeleop
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2504.16054
https://github.com/starVLA/starVLA
https://arxiv.org/abs/2503.20020
https://arxiv.org/abs/2503.20020
https://github.com/thu-ml/RDT2
https://arxiv.org/abs/2308.12952
https://arxiv.org/abs/2308.12952
https://penn-pal-lab.github.io/pi0-Experiment-in-the-Wild
https://penn-pal-lab.github.io/pi0-Experiment-in-the-Wild
https://penn-pal-lab.github.io/pi0-Experiment-in-the-Wild
https://penn-pal-lab.github.io/pi0-Experiment-in-the-Wild
https://penn-pal-lab.github.io/pi0-Experiment-in-the-Wild
https://arxiv.org/abs/2409.12514
https://arxiv.org/abs/2409.12514
https://arxiv.org/abs/2412.13877

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

on multi-embodiment intelligence normative data for
robot manipulation. arXiv preprint arXiv:2412.13877,
2024.

Philipp Wu, Yide Shentu, Zhongke Yi, Xingyu Lin, and
Pieter Abbeel. Gello: A general, low-cost, and intuitive
teleoperation framework for robot manipulators. In 2024
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 12156-12163. 1EEE, 2024.
Wei Wu, Fan Lu, Yunnan Wang, Shuai Yang, Shi Liu,
Fangjing Wang, Qian Zhu, He Sun, Yong Wang, Shuailei
Ma, et al. A Pragmatic VLA Foundation Model. arXiv
preprint arXiv:2601.18692, 2026.

Bin Xie, Erjin Zhou, Fan Jia, Hao Shi, Haoqgiang Fan,
Haowei Zhang, Hebei Li, Jianjian Sun, Jie Bin, Jun-
wen Huang, Kai Liu, Kaixin Liu, Kefan Gu, Lin Sun,
Meng Zhang, Peilong Han, Ruitao Hao, Ruitao Zhang,
Saike Huang, Songhan Xie, Tiancai Wang, Tianle Liu,
Wenbin Tang, Wenqi Zhu, Yang Chen, Yingfei Liu,
Yizhuang Zhou, Yu Liu, Yucheng Zhao, Yunchao Ma,
Yunfei Wei, Yuxiang Chen, Ze Chen, Zeming Li, Zhao
Wu, Ziheng Zhang, Ziming Liu, Ziwei Yan, and Ziyu
Zhang. Dexbotic: Open-Source Vision-Language-Action
Toolbox. arXiv preprint arXiv:2510.23511, 2025.
Mengda Xu, Han Zhang, Yifan Hou, Zhenjia Xu, Linxi
Fan, Manuela Veloso, and Shuran Song. DexUMI:
Using Human Hand as the Universal Manipulation In-
terface for Dexterous Manipulation. arXiv preprint
arXiv:2505.21864, 2025.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
Lucas Beyer. Sigmoid loss for language image pre-
training. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 11975-11986,
2023.

Tony Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning Fine-Grained Bimanual Manipulation
with Low-Cost Hardware. In Robotics: Science and
Systems XIX, 2023.

Jinliang Zheng, Jianxiong Li, Zhihao Wang, Dongxiu
Liu, Xirui Kang, Yuchun Feng, Yinan Zheng, Jiayin Zou,
Yilun Chen, Jia Zeng, et al. X-vla: Soft-prompted trans-
former as scalable cross-embodiment vision-language-
action model. arXiv preprint arXiv:2510.10274, 2025.
Zhengbang Zhu, Minghuan Liu, Xiaoshen Han, and
Zhengshen Zhang. Maniunicon: A unified control in-
terface for robotic manipulation, 2025. URL https:
//github.com/Universal-Control/ManiUniCon.

https://arxiv.org/abs/2412.13877
https://arxiv.org/abs/2412.13877
https://arxiv.org/abs/2309.13037
https://arxiv.org/abs/2309.13037
https://arxiv.org/abs/2601.18692
https://arxiv.org/abs/2510.23511
https://arxiv.org/abs/2510.23511
https://arxiv.org/abs/2505.21864
https://arxiv.org/abs/2505.21864
https://arxiv.org/abs/2505.21864
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2510.10274
https://arxiv.org/abs/2510.10274
https://arxiv.org/abs/2510.10274
https://github.com/Universal-Control/ManiUniCon
https://github.com/Universal-Control/ManiUniCon

APPENDIX
A. Dynamic tasks with diffusion policy

To validate RIO’s ability to support high-frequency policy
rollouts, we chose two dynamic tasks as a case study. Note
that we train Diffusion Policy (DP) rather than VLAs, as the
latter struggle to produce precise, fast action chunks.

« Ball Throwing: where the robot picks up a ball and throws
it into a container.

o Tortilla flipping: where the robot must grasp a bowl
containing a tortilla and move it such that the tortilla
flips over.

We collect 50 teleoperated demonstrations using GELLO at
80 Hz. Table V shows the success rate across 20 trials; DP is
able to achieve 66.7% for the flipping task and 100% for the
throwing.

d:

Fig. 9: Dynamic tasks We show keyframes from successful
DP rollouts on the chosen tasks.

B. Code specifics

Template node. Our Node implementation is inspired by
Diffusion Policy [12] and UMI [11], with a main loop that
publishes state through a ring_buffer and processes re-
quests received through a request_queue. For RIO, we
provide code for a template node in Figure 12, which users
can copy from to quickly implement new Nodes, such as to
for a different robot or teleoperation interface. To support
a range of middleware with seamless switching between
them, we construct Nodes via factory functions that dynam-
ically inherit from any middleware class that implements
“publish/request” functionality. These factory functions can
produce pairs of client and server nodes to automatically
handle the “subscribe/response” protocol. Each middleware
creates its own ring_buffer and request_queue based
on example_data and example_request, along with
internal functionality for message passing, that is abstracted
away from the user.

Main Loop Example. RIO streamlines robot control de-
velopment by generating matched Server and Client pairs
from a single station configuration dataclass. The factory func-
tion introspects configuration fields and their corresponding
configurations, dynamically imports modules, and instantiates
node factories. Servers are launched in parallel using the
server manager, while clients connect through the configured
middleware layer. Robot and camera nodes can be optionally

aggregated into an environment class that exposes Gym-
style methods reset (), step (), get_state ()), with the
embodiment type automatically inferred from available com-
ponents. Peripheral nodes not wrapped by the environment,
such as teleoperation devices or visualizers, remain accessible
via their configuration keys.

Within the main loop, users call node API methods directly,
which internally leverage ring buffers and request queues for
asynchronous interprocess communication. This architecture
decouples timing constraints: servers publish sensor data and
process commands at their native frequencies, while the con-
trol loop samples and issues commands at its own rate without
blocking. The consistent pattern across applications enables
rapid prototyping of teleoperation, policy deployment, and data
collection workflows.

from rio import time
from rio.envs.factory import make_env
from rio.middleware import ServerManager

Factory function to create servers, clients,
— and environment based on configuration
servers, clients, env = make_env(cfqg)
Starts the servers with the desired middleware
with ServerManager (cfg.mw,
<« list (servers.values())):
Start clients
with (
env,
clients["teleop"] () as teleop,

) :

while True:
Query client APIs,
cmd = teleop.poll()
action = env.build_action (cmd)
obs env.step (action)
time.precise_wait ()

all non-blocking

Fig. 10: Example of a main loop with RIO. Factory
functions instantiate environments and custom clients from a
single configuration file. Dynamic Inheritance forwards each
component to the chosen middleware; once servers and clients
are initialized, method calls pass through the storage structures
(queues and ring buffers), avoiding blocking operations in the
main loop.

The Embodiment Abstraction and State Reporting RIO
introduces an embodiment abstraction layer that aggregates
hardware-specific clients into coherent robot morphologies.
The Base Embodiment class defines a common interface
with methods for state retrieval, command execution, and
action parsing. Concrete implementations such as SingleArm
combine an arm client with an optional gripper and hand
clients, while Bimanual pairs two arms with their respective
end-effectors. During environment initialization, the factory
function introspects each embodiment class’s constructor sig-
nature and automatically matches required parameters against
available clients from the station configuration. This design
enables seamless transitions between different robot setups,

from a single xArm to a dual-arm SO-100 configuration,
without modifying application logic.

from ..schema import Observation

@dataclass

class BimanualObs (Observation) :
Left arm (arml)
arml_proprio_eef: np.ndarray | None = None
arml_proprio_joints: np.ndarray | None = None
gripperl_position: float | None = None
handl_pose: np.ndarray | None = None
handl_joints: np.ndarray | None = None

Right arm (arm2)

arm2_proprio_eef: np.ndarray | None = None
arm2_proprio_joints: np.ndarray | None = None
gripper2_position: float | None = None
hand2_pose: np.ndarray | None = None
hand2_joints: np.ndarray | None = None

@dataclass
class SingleArmObs (Observation) :
proprio_eef: np.ndarray | None = None

proprio_joints: np.ndarray | None = None
gripper_position: float | None = None

hand_pose: np.ndarray | None = None
hand_joints: np.ndarray | None = None

Fig. 11: Example of observation schema. Morphology-
specific schemas extend a common base structure, enabling
standardized state reporting across different robot configura-
tions.

Each embodiment defines a dedicated observation structure
that extends a common base schema, ensuring standardized
data representation across morphologies. The embodiment
queries all component states and camera data, returning a
structured observation object, which is then wrapped into a
step structure containing the timestep, instruction, observation,
action, and metadata fields. This unified schema provides a
consistent interface for downstream consumers such as policy
networks, data recorders, and visualization tools, regardless of
the underlying hardware configuration.

import numpy as np

from .. import time

from ..middleware import ClientFactory,
— ServerFactory

from ..node import Node

class Template (Node) :
__api___ = ["get_state", "send_req"]
__pub__ = True
__req__ = True

def __init__ (self, dtype=np.float32, =, freq:

— int = 100, =**kwargs):
self.dtype = dtype
super () .__init__ (freg=freq, **kwargs)

def _ post_init__ (self):
self.example_data = {
"state": np.array (...,

— dtype=self.dtype),
"timestamp": time.now () }
self.example_request = {"value":

— np.array(..., dtype=self.dtype)}
self.run = self.pubreq
super () .__post_init__ ()

def pubreqg(self):
rate = time.Rate(self.freq)
self.pub_ready_event.set ()
self.req _ready_event.set ()

while not self.exit_event.is_set () :
Publish state
data = {"state": 0.0, "timestamp":
< time.now ()}
self.ring_buffer.put (data)

Fetch requests
regs = self.request_queue.get_all ()
for reqg in regs:

Handle request. ..

rate.precise_sleep ()

def get_state(self, k=None, out=None) :
return (
self.ring_buffer.get (out=out)
if k is None
else self.ring _buffer.get_last_k (k=k,
— out=out)

)

def send_reqg(self, value):
self.request_queue.put ({"value": value})

def TemplateServer (mw, =*args, =*xkwargs):
return ServerFactory(mw, Template, =xargs,
— **xkwargs)

def TemplateClient (mw, =*args, =*xkwargs):
return ClientFactory (mw, Template, #args,
— **xkwargs)

Fig. 12: Template node. Nodes are constructed with a fac-
tory function by dynamic inheritance from any middleware
class that implements publish/request functionality, allowing
for seamless switching between different middlewares. Paired
client-server nodes automatically handle subscribe/response.

Table V: Policy deployment for dynamic tasks (Diffusion Policy). We showcase that RIO can successfully roll out challenging
dynamic tasks, achieving competent success rates across 20 demonstrations on a throwing and a flipping task. We also showcase
that we can do so without a significant slowdown compared to the average demonstration time in the finetuning set.

Success Task Completion Demo RAM CPU GPU GPU
Rate (%) Time (s) Time (s) (GB) (%) Util (%) Mem (%)

xArm7 BC DP Flip Tortilla 66.7 1236 £ 257 7.59s £ 079 172 £ 0.1 88 =19 8.6 =37 93 £ 04
xArm7 BC DP Throw Ball 100.0 1473 £ 128 13.26 £ 223 158 £08 6.8 £ 0.1 0.6 £08 9.1 £ 06

Robot Policy Task

	Introduction
	Related Works
	Generalist robot policies
	Cross-embodiment robot data
	Robot control stacks

	Robot I/O (RIO)
	Design Philosophy
	Nodes and Middlewares
	Robot Stations
	Teleoperation and Data Collection
	Policy Inference

	Evaluation
	Policy Finetuning and Deployment
	Performance Analysis

	Conclusion
	Dynamic tasks with diffusion policy
	Code specifics

