
RIO: Flexible Real-time Robot I/O for

Cross-Embodiment Robot Learning

Author Names Omitted for Anonymous Review. Paper-ID 928

π obs

sensor state

teleop state

teleop2 state

arm state

gripper state

arm2 state

gripper2 state

humanoid state

input /

π act

sensor settings

teleop cmd

teleop2 cmd

arm joints

gripper pos

arm2 joints

gripper2 pos

humanoid joints

/ output

single arm

bimanual

humanoid

policy

sensors

interfaces

data cmd

Fig. 1: RIO. We introduce a framework for flexible real-time Robot I/O (RIO) for cross-embodiment robot learning. RIO

provides lightweight Python-based hardware drivers to coordinate diverse robot morphologies, sensors, teleoperation interfaces,

and policies in a full-stack manner.

Abstract—Despite recent efforts to collect multi-task or multi-
embodiment datasets, to design efficient recipes for training
Vision-Language-Action models (VLAs), and to showcase these
models on selected robot platforms, generalist robot capabilities
and cross-embodiment transfer remain largely elusive ideals.
This cross-embodiment robot learning paradigm remains lim-
ited by fragmented data-collection infrastructure, the lack of
standardization on versatile data formats, and the significant
engineering effort involved in reproducing hardware setups and
organizing multiple control stacks for quickly deploying models
on diverse robot platforms. As a result, most robot code tends
to be highly specific to the exact robot setup that the user
decided on, which adds major overhead when attempting to
reuse, recycle, or share artifacts between users. To bridge this
gap, we present Robot I/O (RIO), an open-source Python-based
framework that provides flexible, lightweight components for
robot control, teleoperation, data formatting, sensor configura-
tion, and policy deployment across diverse hardware platforms
and morphologies. RIO provides abstractions that enable users
to make any choice (robots, sensors, teleoperation interfaces,
middlewares, data formats, policies) and to switch between them,
with minimal reconfiguration effort. We validate RIO on VLA
deployment workflows across three morphologies (single-arm,
bimanual, humanoid) and four robot hardware platforms with
varying grippers and cameras. We showcase policy rollouts by
collecting teleoperated data to fine-tune state-of-the-art VLAs,
including π0.5 and GR00T, on household tasks such as pick-and-
place, folding, and bowl scrubbing. By open sourcing all our

efforts, we hope the wider robotics community can accelerate
their pace of robot learning on real-world robot hardware.

I. INTRODUCTION

Vision-language-action models (VLAs) have recently

emerged as a promising approach for training generalist robot

policies, leveraging large-scale datasets to learn broadly capa-

ble robot behaviors. Despite their potential, achieving cross-

embodiment generalization, the ability to transfer learned be-

haviors across different robot morphologies, remains a funda-

mental challenge. VLAs cannot be deployed out of the box on

new embodiments; successfully reproducing and running these

systems on new robots still demands substantial engineering

effort. This challenge, however, extends well beyond VLAs.

Robotics practitioners have long contended with the frag-

mentation inherent in the field. Varying morphologies, diverse

sensor configurations, heterogeneous hardware platforms, and

manufacturer-specific driver code collectively result in robot

infrastructure that is highly specific to a user’s particular setup.

This results in significant overhead when attempting to reuse

code, share datasets, or build on each others works. Existing

cross-embodiment datasets like Open X-Embodiment [36] are,

in practice, aggregations of many individual collection efforts

conducted across disparate infrastructure.

The cost of this fragmentation is growing. As robot hard-

ware becomes increasingly affordable, more platforms are

entering research labs and deployment settings. Yet the special-

ized nature of most robotics infrastructure means that each new

platform carries substantial integration overhead. Consider a

common scenario: a research team wishes to reproduce real-

world results released by another group. To use the original

control code, they would need to replicate the exact hardware

setup one-to-one, as in efforts like DROID [26]. If they instead

have a different robot arm, they face the burden of rewriting the

entire control stack from scratch, before even trying to adapt

any learned policies. This makes most robot learning hardware

code difficult to reuse, and switching between platforms far

harder than it should be.

What is the most important infrastructure for robot learning

to advance? Beyond large datasets, we believe that a lack

of flexible, reusable, accessible, and performant full-stack

robot infrastructure has been a critical barrier to cumulative

progress and collaboration within the field. Robot learning is

missing reusable building blocks for hardware with flexible

abstractions that have become standard in other areas of

machine learning. Just as specialized high-performance GPU

kernels within high-level auto-differentiation frameworks have

enabled the rapid development and iteration of neural net-

works, robotics requires analogous foundational components

for hardware and control that can be reliably shared, extended,

and built upon across the community.

In this paper, we present the following contributions:

i) We introduce RIO, a flexible real-time Robot I/O frame-

work for scalable cross-embodiment robot learning. RIO

does not aim to be a comprehensive solution for robot

learning, but rather a lightweight set of reusable building

blocks that can be quickly combined to deploy policies on

real robots, depending on each user’s needed configura-

tion. RIO is designed to be flexible, reusable, accessible,

and performant, with abstractions such that the user is

free to make any choice at each layer of the stack, and

to switch between them with minimal effort.

ii) We validate RIO for the VLA deployment workflow span-

ning diverse embodiments across single arm, bimanual,

and humanoid robots with different grippers and sensors.

This includes different robots, sensors, teleoperation in-

terfaces, middlewares, data formats, and policies.

iii) We demonstrate real-world deployment by collecting

teleoperated data to fine-tune state-of-the-art VLAs such

as π0.5 and GR00T, on household tasks such as pick-and-

place, folding, and bowl scrubbing.

II. RELATED WORKS

A. Generalist robot policies

Recent advances in vision-language-action models

(VLAs) [6, 18, 4, 23, 40, 3] aim to leverage the robust

image-to-language alignment learned by internet-scale pre-

trained vision-language models (VLMs) [50, 17, 2, 1, 14] to

train generalist robot policies. VLAs adapt VLMs to predict

actions through imitation learning on robot datasets collected

via human teleoperation of robots, scaling foundational work

on imitation learning for visuomotor policy learning, such

as ALOHA [51] and Diffusion Policy [12]. Due to the

computational resources and data scale required, state-of-the-

art VLAs are predominantly trained by industry labs with

substantial infrastructure and engineering personnel. Open

source efforts have sought to reproduce and democratize

these results [44, 31, 39, 14, 27], providing fully open-source

implementations and model weights. However, a significant

limitation remains: current VLAs must in practice be fine-

tuned for each robot setup. Released VLA model checkpoints

are typically fine-tuned for specific embodiments, such as

the Franka arm from DROID [26] or the WidowX arm from

BridgeData V2 [42]. Consequently, end-users must either

reproduce the exact hardware setup used during training [43],

or undertake substantial engineering effort to implement their

own robot control stack, before even attempting to adapt

learned policies to their own platforms. In this work, we lower

this barrier by introducing a flexible cross-embodiment robot

control stack, validated on the VLA adaptation workflow and

deployed across diverse robot configurations.

B. Cross-embodiment robot data

The effectiveness of scaling VLAs depends on access to

large-scale robot demonstration data. Prior work has demon-

strated that scaling robot data across both task diversity and

robot embodiments [13, 45, 10, 16, 41, 47] shows promise at

training better generalist robot policies, and cross-embodiment

robot data may also enable learning directly from humans [25].

Training truly general robot policies requires diversity in both

tasks and embodiments. Open X-Embodiment [36] aggregates

60 datasets spanning over 1 million robot trajectories across

22 embodiments. However, the heterogeneous collection tech-

niques and sensor configurations across these datasets neces-

sitate substantial curation for effective policy training, such as

through filtering Ghosh et al. [18], Khazatsky et al. [26] or data

mixture re-weighting [22]. In this work, we aim to facilitate

the collection of high-quality cross-embodiment robot data, by

developing flexible and reusable robot infrastructure.

C. Robot control stacks

Over the years, many robot control stacks have emerged [34,

28, 15, 8, 53, 29, 35, 24, 19, 33, 11] that are capable of

cross-embodiment robot control. ROS [33] was developed to

facilitate system compartmentalization and distributed com-

munication. While this modular, distributed approach offers

benefits for complex robotic systems, it requires compounding

systems-level engineering to coordinate all modules together.

Furthermore, ROS presents a high barrier to entry for re-

searchers and practitioners new to robotics, as it requires

wrangling its complex configuration management and build

system. Despite this proliferation of frameworks, robot code

remains highly platform-specific. We attribute this to two

factors: first, most roboticists work with a single hardware plat-

form, which incentivizes writing vendor-specific code quickly

Table I: Comparison of cross-embodiment robot stacks. We compare various cross-embodiment robot stacks on the basis of

native platform support, at different layers of the robot learning pipeline, e.g., data-collection system support, robot hardware

support, middleware, data formats, and policy architecture support. For example, some stacks combine robot arm and robot

gripper drivers, making it difficult to use other end effectors on arms.

Framework Humanoids Bimanual Single arm Robot grippers Teleop Cameras Middleware(s) Data format(s) Policies

Ark [15] : LCM : Pickle

LeRobot [8] : Threads/gRPC1 : LeRobotDataset

ManiUniCon [53] : Shm : Zarr

PAPRLE [29] : ROS : Pickle n/a

PyRobot [35] : ROS : Pickle n/a

RCS [24] : RPC : Parquet

RoBits [19] : ZMQ : NPZ/JSON n/a

UMI, DP [11, 12] : Shm : Zarr : DP

RIO (ours) : any : any

1LeRobot uses Threads for hardware drivers and gRPC for asynchronous policy inference.

rather than abstractable solutions; second, existing frameworks

lack flexible abstractions at every layer of the stack to ensure

cross-embodiment robot code is easy to write in the first place.

As robot hardware becomes increasingly affordable [8, 51],

more platforms are entering research labs and deployment

settings. Hardware code released alongside Diffusion Policy

(DP) [12], later extended for cross-embodiment robot support

by UMI [11, 49], has found widespread adoption by robotics

researchers with numerous community forks. LeRobot [8] has

also found widespread adoption among the broader robotics

community. Its popularity stems in part from its support

for low-cost robot hardware along with Python-only imple-

mentations, which eliminates the need for complex build

systems such as ROS and multi-language dependencies. By

streamlining the development workflow, LeRobot has lowered

the barrier to deploying real-world robot systems and enabled a

wider range of practitioners to experiment with robot learning.

In Table I, we compare the flexibility of RIO to a variety of

existing cross-embodiment robot infrastructure, across every

layer of the robot learning stack. RIO offers a reusable Python-

based set of real-time robot infrastructure in a similar style

to LeRobot and DP/UMI, while supporting reconfigurability

at each layer to facilitate VLA deployment workflows across

diverse robot morphologies. RIO enables combinatorial config-

uration of robots, teleoperation devices, cameras, middlewares,

data formats, and policies, for maximum flexibility.

III. ROBOT I/O (RIO)

RIO is a Python-based framework for flexible real-time

Robot I/O, with reusable components for robot control, teleop-

eration, data collection, and policy deployment across diverse

robot embodiments. Users are free to make any choices at

every layer of the stack (humanoid robots, robot arms, robot

grippers, teleoperation interfaces, cameras, middlewares, data

formats, policies) and to switch between them with minimal

effort for reconfigurability. See Table II for a detailed list of

currently supported hardware.

Figure 2 illustrates the overall system architecture of RIO.

Section III-A describes the Design Philosophy, Section III-B

Table II: Current hardware support (more incoming). RIO

provides flexibility across robot hardware (humanoid robots,

robot arms, robot grippers), teleop interfaces, cameras, and

middlewares for multi-process distributed communication.

These can be combined in any configuration depending on

the user’s hardware requirements.

Humanoid Robots Unitree G1, Booster T1
Robot Arms UFactory (xArm5/6/7, 850, Lite6), UR (UR5e,

UR7e), Franka (FR3, Panda), Kinova (Gen3),
SO-100/SO-101

Robot Grippers UFactory Gripper, Franka Gripper, Robotiq Gripper
(2F-85/2F-140), DH-Robotics Gripper (AG-105-145)

Teleop Interfaces Spacemouse, Gamepad, Keyboard, VR (Apple Vision
Pro, Meta Quest), Leader-Follower (GELLO), Phone

Cameras RealSense, ZED, UVC (Webcams, USB cameras),
iPhone (Record3D)

Middlewares Shared Memory, Thread, Portal, Zenoh, ZeroRpc

introduce the client-server Nodes abstraction and Middlewares

implementation for message passing, Section III-C outlines the

reconfigurable instantiation of Robot Stations, Section III-D

describes Teleoperation and Data Collection used to collect

real-world robot trajectories across multiple embodiments, and

Section III-E describes the implementation of asynchronous

Policy Inference to obtain smooth real-world rollouts with

observation/action chunking.

A. Design Philosophy

We describe the five design tenets of RIO: flexible, reusable,

accessible, performant, and consistent.

• Flexible. RIO is agnostic to each component and does not

make any locked-in choices. The user is free to choose

between options at every layer, and switch between them

with minimal effort.

• Reusable. RIO is composed of a lightweight set of

reusable building blocks, that can be quickly combined

and modified to support a user’s desired configuration.

• Accessible. RIO is lightweight to install and uses Python-

based hardware modules, with a command-line interface

over a single configuration file.

obs

RobotsTeleop
Interfaces Sensors Policies

cmd

Middlewares

data

RIO : Flexible Real-time Robot I/O
for Cross-Embodiment Robot Learning

act
Main

Process

teleop
teleop2
humanoid
arm
arm2
gripper
gripper2
cameras

Nodes

Fig. 2: Architecture. High-level overview of the architecture of RIO. Every component of the stack is flexible, meaning that the

user is free to choose between different options (robots, sensors, teleoperation interfaces, middlewares, data formats, policies)

and switch between them, with minimal effort.

• Performant. RIO is fully capable of high-frequency real-

time robot control, and uses asynchronous policy infer-

ence to yield smooth robot trajectories.

• Consistent. RIO is designed to ensure consistent, scalable,

reproducible data collection and robot learning.

Despite the proliferation of different robot infrastructures

(Table I), most robot code has remained highly platform-

specific. We attribute this to two factors: first, most roboticists

work with a single hardware platform, which incentivizes

writing vendor-specific code quickly rather than developing

more abstract solutions; second, existing frameworks lack

flexible abstractions at every layer of the stack to ensure that

cross-embodiment robot code is easy to write in the first place.

We design RIO to share full-stack robot control code that can

be reconfigured and built upon by the community.

B. Nodes and Middlewares

Nodes for teleoperation interfaces, sensors, robots, and poli-

cies are implemented from the same template Node, requiring

minimal boilerplate to enable flexible, real-time I/O across

diverse hardware and deployment configurations.

Nodes. A Node dynamically inherits from a given Middleware

that automatically handles message passing. Factory func-

tions produce matched server-client Node pairs, for which its

dynamic parent class implements the specified Middleware.

Nodes support three execution patterns for publishing data and

handling requests:

1) Publish-only: pub() publishes data in the run loop.

2) Request-only: req() handles requests in the run loop.

3) Combined: pubreq() publishes data and handles re-

quests in a single loop.

For patterns (1) and (2), the complementary operation can

be optionally run in a separate worker loop thread. For

example, pub() in the run loop with req() in a worker

loop thread, or vice versa. To implement a Node, the user

defines the relevant methods: a pub() implementation calls

ring_buffer.put(..) to publish data, while a req()

implementation calls request_queue.get() to receive

and process requests. Published data flows through a ring

buffer that continuously streams state at a fixed frequency,

providing time-synchronized access to sensor readings, robot

poses, and other data. Requests flow through a queue that en-

ables asynchronous command communication, allowing mul-

tiple clients to send timestamped commands independently

and at arbitrary rates. For each, a server Nodes execute

“publish/request”, while a client Node automatically resolves

“subscribe/reply”. The user specifies example_data and

example_request in each Node definition, which are used

to infer buffer shapes and data types when initializing ring

buffers and request queues. Each Node exposes a public API

(defined via __api__), whose methods are automatically

wrapped for serialization on the server side and deserial-

ization on the client side, enabling transparent bidirectional

communication. Because Nodes are middleware-agnostic, they

can be paired with different middleware backends depend-

ing on deployment requirements. Process synchronization is

managed through ready and exit events that signal when

“publish/request” loops are ready or exited, ensuring that user

logic in the main process blocks until every Node has fully

initialized and that the process cleans up when it completes.

Middlewares. Nodes interact with Middleware through a

common interface, hiding transport-level details. For network-

based communication, middleware such as Zenoh or ZeroRpc

handles serialization and transport over TCP or IPC. For high-

throughput local communication, shared memory middleware

uses a SharedMemoryManager to allocate ring buffers and

request queues in shared memory, allowing zero-copy data

exchange between processes. The shared memory implemen-

tation runs the Node’s loops in a separate process and com-

municates buffer handles back to the parent through pipes,

enabling multiple processes to access the same underlying

memory regions without serialization overhead. Middlewares

can be interchanged depending on the user’s requirements.

For instance, switching to the Thread middleware can help

with debugging when orchestrating many Nodes on the same

computer, since running everything multi-threaded within one

process simplifies stack traces, breakpoints, and exception han-

dling compared to multi-process or networked deployments.

Alternatively, for embodiments such as mobile manipulator

robots that may not have a powerful onboard computer, the

user may use network-based middleware to communicate

between multiple machines.

C. Robot Stations

We aggregate the instantiation of all nodes that make

up an environment into a single station configuration

file. A robot station is instantiated through a composable

dataclass configuration that specifies the hardware topol-

ogy of the deployment, defining the set of robots, end

effectors, and sensors (e.g., {arm, gripper, arm2,

gripper2, wrist_camera, wrist_camera2} for a

bi-manual robot station). The effect is to simplify the main rou-

tine’s logic in robot control loops: a context manager initializes

all server Nodes with the specified middleware backend, while

client Nodes are started within nested context managers that

yield proxy objects for transparent communication. While the

nodes internally use the specified middleware, queues, and

ring buffers, the main routine interacts only with the APIs,

resulting in simple, Python-based code. This pattern enables

the same application logic to operate over arbitrary station

configurations without modification.

D. Teleoperation and Data Collection

Teleoperation. We design three teleoperation scripts to sup-

port data collection. The first one controls relative end-effector

poses (Keyboard, Phone, Gamepad, Spacemouse), and the

second maps absolute joint positions using a leader-follower

setup (ALOHA [51], GELLO [46]), for either single-arm or

bimanual tabletop robot arms. The third script uses wrist pose

retargeting from Apple Vision Pro [37] to control the upper-

body of a humanoid robot, similar to [20, 21]. These scripts do

not assume any particular hardware platform, so teleoperation

devices and robots can be swapped based on each user’s needs.

To ensure smooth teleoperation across devices and control

frequencies, we include interpolators and signal-processing

filters (e.g., low-pass filters). These can also be used during

policy inference to mitigate the effects of noisy actions.

Data collection. We define a recorder for logging robot

demonstrations. To ensure consistent data collection across

different hardware, we enforce standardized units: meters

for world coordinates and radians for angular measurements.

We adapt the RLDS-style format [38] to aggregate multiple

data streams into a unified state representation, as shown

in Figure 3. To support different robot platforms, we intro-

duces the concept of morphologies—abstract descriptions of a

robot’s structure, each defining its own set of state keys. Each

morphology overloads the observation field of the RLDS step

with its specific keys. This design standardizes state reporting

across platforms, regardless of the underlying hardware.

@dataclass

class Camera:

rgb: np.ndarray | None = None

depth: np.ndarray | None = None

meta: dict = field(default_factory=dict)

@dataclass

class Observation:

proprio: np.ndarray # Defaults to policy

action space↪→

cameras: dict[str, Camera] =

field(default_factory=dict)↪→

@dataclass

class Step:

timestep: int | None

observation: Observation

instruction: str | None

action: np.ndarray | None

meta: dict | None =

field(default_factory=dict)↪→

Fig. 3: Observation Schema. Standardized state reporting

across different client instances and embodiments.

One challenge with scaling robotic data collection is the

sheer storage required to manage it, given that a typical robot

demo consists of the internal state of the robot, as well as mul-

tiple camera streams (often including depth) and other relevant

sensors. Additionally, depending on the specific target learning

architecture, the data may need to be exported and processed

differently. To this end, we use RoboDM [9], a toolkit that

employs flexible compression schemes and streamlined file

structures, to efficiently record demos in a highly compressed,

lightweight format that is quick to save and load. For training

or finetuning, we encourage users to write minimal converters

so that the exported demos can directly integrate with their

intended dataloader format.

E. Policy Inference

Aside from providing lightweight building blocks for hard-

ware components, we also want to reduce the overhead needed

to swap between different policies. To reduce the challenge of

integrating robot policies into our control stack, we design a

high-level API for policies. For each policy, we only require

a lightweight interface to instantiate the policy, convert ob-

servations from a standardized format to the policy-specific

observation format, and run inference. We design a policy

Fig. 4: VLA manipulation trajectories. We showcase rollouts on π0.5 across 3 morphologies on 5 diverse tasks. This figure

showcases a frame of the policy rollout at 0%, 20%, 40%, 60%, 80%, and 100% task completion.

Table III: Policy deployment. We deploy state-of-the-art VLAs (π0.5, GR00T N1.5) across 3 morphologies (single arm,

bimanual, humanoid), achieving ≥60% success across 20 trials on all tasks with finetuning on 50 teleoperated demonstrations.

Policy rollout times closely match human demonstrations, with an average slowdown of just 3̃.69s, and some tasks completing

faster than demonstrations. Asynchronous inference maintains high GPU utilization throughout execution, showing that RIO

efficiently saturates available compute.

Robot Policy Task
Success

Rate
Task Completion

Time (s)
Demo

Time (s)
RAM
(GB)

CPU
(%)

GPU
Util (%)

GPU
Mem (%)

xArm7 BC π0.5 Fold Shirt 92.5 41.96 ± 14.58 41.57 ± 9.25 22.5 ± 2.7 13.0 ± 1.4 56.7 ± 1.7 79.1 ± 0.0

xArm7 BC π0.5 Place Can 95.0 16.08 ± 3.41 14.46 ± 2.00 24.8 ± 1.5 13.2 ± 1.4 54.6 ± 3.1 79.1 ± 0.1

SO-100 BC π0.5 Fold Cloth 60.0 27.50 ± 5.51 22.43 ± 3.30 19.6 ± 0.5 14.1 ± 1.5 46.3 ± 10.0 78.6 ± 0.0

SO-100 BC π0.5 Scrub Bowl 64.0 40.33 ± 13.68 27.66 ± 5.22 19.7 ± 0.7 15.0 ± 2.2 52.0 ± 4.8 78.6 ± 0.1

Unitree G1 BC GR00T N1.5 Pick Box 95.0 9.07 ± 6.10 10.38 ± 4.04 25.2 ± 0.1 26.6 ± 3.3 61.7 ± 4.7 33.8 ± 0.0

Unitree G1 RL PPO Navigate 100.0 31.27 ± 6.56 n/a 23.0 ± 0.1 10.3 ± 0.4 5.1 ± 0.1 10.3 ± 0.1

Booster T1 RL PPO Navigate 100.0 29.73 ± 4.49 n/a 22.6 ± 0.1 10.4 ± 0.4 5.3 ± 0.2 10.4 ± 0.3

wrapper node that uses this API to directly instantiate policies

and asynchronously handle inference requests. By handling

inference requests directly through our middleware, we avoid

the additional overhead of a dedicated policy server. Addi-

tionally, we design a configurable, policy-agnostic, hardware-

agnostic inference script that queries the policy wrapper,

handles logic for continuously obtaining observations from

hardware, post-processes actions for smoothness, and sends

commands to hardware. This allows for seamless switching

between different policies and hardware.

IV. EVALUATION

We evaluate whether RIO can support the complete robot-

learning workflow, from teleoperated data collection through

to finetuning and deployment, across diverse embodiments.

Specifically, our experiments address the following questions

regarding RIO’s core functionalities:

• Is RIO performant for real-time policy deployment?

• Can RIO support data collection across diverse mor-

phologies that require different teleoperation interfaces?

• Does RIO enable effective deployment and benchmarking

of state-of-the-art VLAs across embodiments?

Experimental Setup. All evaluations are performed on the

same computer, equipped with NVIDIA GeForce RTX 4090

GPU, AMD Ryzen 7 5700X CPU, and 64 GB of RAM.

A. Policy Finetuning and Deployment

RIO targets two stages of the robot-learning pipeline: data

collection for fine-tuning and deployment. We adopt a bring-

your-own-training-stack approach: researchers collect demon-

strations with RIO, export them to their preferred training

format, and import the resulting weights back into RIO for

deployment. This ensures consistency between collection and

rollout while remaining agnostic to model architecture and

training infrastructure.

Fig. 5: Humanoid locomotion trajectories. We evaluate RL policies on both Unitree G1 (top) and Booster T1 (bottom),

humanoid robots from different manufacturers with different hardware drivers added to our stack. RIO is capable of high-

frequency real-time control for humanoid locomotion.

We validate this workflow across three morphologies

(single-arm, bi-manual, humanoid) and four platforms, training

two VLA policies (π0.5, GR00T N1.5) and two RL policies

(PPO for locomotion). For π0.5, we finetune1 from the DROID

checkpoint for single-arm tasks and the ALOHA checkpoint

for bi-manual tasks, training for 20K steps in each case.

For GR00T, we use 150 demonstrations for the humanoid

manipulation task. All demonstrations are collected at 50Hz

and stored using a compressed format that can be exported

to target training pipelines; for reference, 150 episodes with

three camera views require only 1.31GB.

To verify policy integration, we report success-rate metrics

and compare the average task completion time with the

average demonstration time.

Single Arm Tabletop Manipulation. We use a UFactory

xArm7 with a Robotiq 2F-140 gripper and three RealSense

cameras to evaluate RIO’s. We collect data for two pick-and-

place tasks (place can in bin, folding a shirt) and two dynamic

tasks (hitting a ball with a paddle, and flipping a tortilla).

For pick-and-place, we employ both a Spacemouse and a

GELLO leader-follower interface. Empirically, end-effector-

space devices such as the Spacemouse yield cleaner demon-

strations for tasks where rotation is not a major factor. We

note that training VLAs with binary gripper actions yields poor

gripper control; we therefore apply trajectory interpolation and

low-pass filtering to smooth collected actions. As shown in

Table III, both tasks achieve success rates above 90%, with

completion times within 2 seconds of demonstration time.

For dynamic tasks, we use the GELLO interface to capture

complex motions. These tasks illustrate RIO’s ability to collect

data at high control rates (80Hz). Given that reliable dynamic

task performance from VLAs remains an open research ques-

tion, we only demonstrate teleoperation for these tasks.

Bi-manual Arm Tabletop Manipulation. We use SO-101

arms to evaluate RIO’s support for bi-manual coordination.

RIO natively supports robot-to-robot teleoperation; configur-

ing the leader arms as teleoperation devices requires only a

change to the station configuration file. We perform bi-manual

1We use one checkpoint per-task, per embodiment.

cloth folding and bowl scrubbing, in which the operator must

first grasp the objects before executing the task.

All bi-manual tasks achieve at least a 60% success rate.

When comparing task completion time, we observe a greater

departure from demonstration time than in the uni-manual

case, with an average difference of -8.87 seconds. In particular,

the scrub bowl task shows the largest difference. We empiri-

cally observe that this is not due to inference snags but rather

to errors in policy rollout that lead to retry behavior.

Humanoids. To demonstrate the flexibility of RIO, we also

validate that our system can perform high-frequency control

for humanoid locomotion on two humanoid robots from dif-

ferent vendors: Unitree G1 and Booster T1 (Figure 5).

B. Performance Analysis

We evaluate RIO’s real-time performance at two levels:

round-trip middleware latency and end-to-end latency under

realistic workload conditions.

Round-trip Middleware Latency. To establish an approx-

imate lower bound on RIO’s communication overhead, we

measure round-trip latency across all supported middlewares.

We follow Open Messaging Benchmark by defining latency

as half the median round-trip time, removing the 1st and

99th percentiles to improve robustness to outliers. We use

a synthetic 2048-byte payload, reflecting typical observation

sizes. This benchmark isolates middleware performance since

the main loop performs only ring buffer reads and writes.

Table IV shows results across 5 supported backends; Zenoh

and shared memory achieve sub-millisecond latency suitable

for high-frequency control, while thread-based and ZeroRpc

backends trade latency for simpler debugging or network

flexibility.

Table IV: Middleware latency. We report round-trip latency

across RIO’s supported middlewares, mean ± stddev, averaged

across 1,000 passes with 2048 bytes payload. Network-based

backends (Zenoh, ZeroRpc) enable distributed multi-machine

deployments, while local options (Shared Memory, Threads)

minimize overhead for single-machine setups. This flexibility

allows balancing performance, distribution, and system com-

plexity depending on requirements.

Middleware Latency (ms)

ZeroRpc 10.3192 ± 5.1707
Thread 5.0746 ± 0.0318
Shared Memory 0.1462 ± 0.0119
Zenoh 0.1227 ± 0.1058

Fig. 6: Node Profiling During Policy Deployment. RIO

distributes blocking operations (camera streaming, policy in-

ference, robot control) across separate nodes, keeping the

main loop free for precise timekeeping. We benchmark on a

realistic payload: π0.5 rollouts on an xArm7 station with three

RealSense cameras streaming at 60Hz. Despite significant

inference latency (9̃2ms), asynchronous action requests enable

continuous control without blocking on model forward passes.

Fig. 7: Observation-Action Latency. We measure end-to-

end latency from multi-camera observation to robot command

execution duration π0.5 deployment. RIO achieves over 3x

lower latency than LeRobot, after accounting for differences

in inference time. This efficiency enables smoother policy

rollouts at higher control frequencies.

End-to-end profiling. To quantify performance under realistic

conditions, we profile RIO during π0.5 rollouts, receiving

inputs from three Intel RealSense cameras (two D415s and

one D405) at 640 × 480 resolution. Section IV-B shows the

execution timeline across nodes. The main loop remains non-

blocking, allowing for precise time-keeping, with blocking

operations distributed to dedicated nodes. Asynchronous in-

ference allows the system to preemptively request actions,

maintaining continuous control despite the 9̃2ms model for-

ward pass. We compare observation-to-action latency against

LeRobot, a widely adopted Python-based framework. Given

minimal overlap between the platforms supported by RIO and

LeRobot, we use a mock robot whose read/write operations

have a 1 ms block time; the camera setup is kept the same as in

previous tasks. As shown in Section IV-B, RIO achieves lower

latency across the different stages. When isolating communi-

cation overhead by excluding observation fetching and policy

inference, RIO outperforms the baseline with 3x lower latency.

This efficiency stems from its streamlined architecture: while

LeRobot introduces delays by threading observations before

network transmission to an asynchronous server, RIO directly

leverages the middleware for asynchronous inference.

V. CONCLUSION

The lack of flexible, reusable, accessible, performant, and

consistent full-stack robot infrastructure has proven to be

a critical barrier to cumulative progress and collaboration

in robotics. In this work, we present RIO, a flexible real-

time Robot I/O framework for cross-embodiment robot learn-

ing. RIO provides lightweight, middleware-agnostic building

blocks for robot control, teleoperation, data collection, and

policy deployment that can be freely combined and recon-

figured across diverse hardware platforms. We validate RIO

across the complete robot learning workflow, demonstrating

its effectiveness on three morphologies (single-arm, bimanual,

humanoid) and four robot platforms. We open-source RIO, and

hope that it will lower the barrier for robotics practitioners

to deploy, benchmark, and iterate on modern robot learning

approaches across diverse hardware configurations.

Limitations and future directions. In this work, we focus on

single-embodiment fine-tuning. Since cross-embodiment gen-

eralization remains an active area of research, we leave cross-

embodiment fine-tuning of VLAs to future work. Additionally,

while we demonstrate dynamic tasks through teleoperation,

reliable dynamic task performance by VLAs remains an open

research question that warrants further investigation. Future

directions include systematic benchmarking of distribution

shift across embodiments or extending support to include

other robot hardware such as mobile manipulators and multi-

fingered dexterous robot hands.

Realsense
(D415)

xArm7

Realsense
(D415)

Gripper
Robotiq
(2F-140)

Realsense
(D405)

UR5e

Zed2iUR7e

2x SO-100
(leader)

2x Gellos

SO-100 SO-100

Innomaker
(1080P)

Innomaker
(1080P)

Logitech (C920)

Gello

Space
Mouse

or

Fig. 8: Example robot stations. We illustrate single arm and

bimanual robot stations with different cameras, controlled with

different teleoperation interfaces, using RIO.

REFERENCES

[1] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-

bin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang,

Jun Tang, et al. Qwen2. 5-vl technical report. arXiv

preprint arXiv:2502.13923, 2025.

[2] Lucas Beyer, Andreas Steiner, André Susano Pinto,

Alexander Kolesnikov, Xiao Wang, Daniel Salz, Maxim

Neumann, Ibrahim Alabdulmohsin, Michael Tschannen,

Emanuele Bugliarello, et al. Paligemma: A versatile 3b

vlm for transfer. arXiv preprint arXiv:2407.07726, 2024.

[3] Johan Bjorck, Fernando Castañeda, Nikita Cherniadev,

Xingye Da, Runyu Ding, Linxi Fan, Yu Fang, Dieter Fox,

Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open

foundation model for generalist humanoid robots. arXiv

preprint arXiv:2503.14734, 2025.

[4] Kevin Black, Noah Brown, Danny Driess, Adnan Es-

mail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy

Groom, Karol Hausman, Brian Ichter, et al. π0: A

Vision-Language-Action Flow Model for General Robot

Control. arXiv preprint arXiv:2410.24164, 2024.

[5] Kevin Black, Manuel Y Galliker, and Sergey Levine.

Real-Time Execution of Action Chunking Flow Policies.

arXiv preprint arXiv:2506.07339, 2025.

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-

gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana

Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine

Hsu, et al. Rt-1: Robotics transformer for real-world

control at scale. arXiv preprint arXiv:2212.06817, 2022.

[7] Herman Bruyninckx. Open robot control software: the

OROCOS project. In Proceedings 2001 ICRA. IEEE in-

ternational conference on robotics and automation (Cat.

No. 01CH37164), volume 3, pages 2523–2528. IEEE,

2001.

[8] Remi Cadene, Simon Alibert, Alexander Soare, Quentin

Gallouedec, Adil Zouitine, Steven Palma, Pepijn

Kooijmans, Michel Aractingi, Mustafa Shukor, Dana

Aubakirova, Martino Russi, Francesco Capuano, Car-

oline Pascal, Jade Choghari, Jess Moss, and Thomas

Wolf. Lerobot: State-of-the-art machine learning for real-

world robotics in pytorch, 2024. URL https://github.com/

huggingface/lerobot.

[9] Kaiyuan Chen, Letian Fu, David Huang, Yanxiang

Zhang, Lawrence Yunliang Chen, Huang Huang, Kush

Hari, Ashwin Balakrishna, Ted Xiao, Pannag R Sanketi,

et al. Robo-DM: Data Management For Large Robot

Datasets. arXiv preprint arXiv:2505.15558, 2025.

[10] Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai,

Yibin Liu, Zixuan Li, Qiwei Liang, Xianliang Lin, Yi-

heng Ge, Zhenyu Gu, et al. Robotwin 2.0: A scalable data

generator and benchmark with strong domain random-

ization for robust bimanual robotic manipulation. arXiv

preprint arXiv:2506.18088, 2025.

[11] Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau,

Benjamin Burchfiel, Siyuan Feng, Russ Tedrake, and

Shuran Song. Universal Manipulation Interface: In-The-

Wild Robot Teaching Without In-The-Wild Robots. In

Robotics: Science and Systems, 2024.

[12] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau,

Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran

Song. Diffusion policy: Visuomotor policy learning via

action diffusion. The International Journal of Robotics

Research, 44(10-11):1684–1704, 2025.

[13] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair,

Bernadette Bucher, Karl Schmeckpeper, Siddharth Singh,

Sergey Levine, and Chelsea Finn. RoboNet: Large-Scale

Multi-Robot Learning. In Conference on Robot Learning,

pages 885–897. PMLR, 2020.

[14] Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tri-

pathi, Yue Yang, Jae Sung Park, Mohammadreza Salehi,

Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al.

Molmo and pixmo: Open weights and open data for state-

of-the-art vision-language models. In Proceedings of the

Computer Vision and Pattern Recognition Conference,

pages 91–104, 2025.

[15] Magnus Dierking, Christopher E Mower, Sarthak Das,

Huang Helong, Jiacheng Qiu, Cody Reading, Wei Chen,

Huidong Liang, Huang Guowei, Jan Peters, et al. Ark:

An Open-source Python-based Framework for Robot

Learning. arXiv preprint arXiv:2506.21628, 2025.

[16] Ria Doshi, Homer Rich Walke, Oier Mees, Sudeep

Dasari, and Sergey Levine. Scaling Cross-Embodied

Learning: One Policy for Manipulation, Navigation, Lo-

comotion and Aviation. In Conference on Robot Learn-

ing, pages 496–512. PMLR, 2025.

[17] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch,

Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,

Jonathan Tompson, Quan Vuong, Tianhe Yu, et al.

PaLM-E: an embodied multimodal language model. In

Proceedings of the 40th International Conference on

Machine Learning, pages 8469–8488, 2023.

[18] Dibya Ghosh, Homer Rich Walke, Karl Pertsch, Kevin

Black, Oier Mees, Sudeep Dasari, Joey Hejna, Tobias

Kreiman, Charles Xu, Jianlan Luo, et al. Octo: An Open-

Source Generalist Robot Policy. In Robotics: Science and

Systems, 2024.

[19] Markus Grotz, Mohit Shridhar, Tamim Asfour, and Di-

eter Fox. PerAct2: Benchmarking and Learning for

Robotic Bimanual Manipulation Tasks. arXiv preprint

arXiv:2407.00278, 2024.

[20] Tairan He, Zhengyi Luo, Wenli Xiao, Chong Zhang, Kris

Kitani, Changliu Liu, and Guanya Shi. Learning human-

to-humanoid real-time whole-body teleoperation. In 2024

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 8944–8951. IEEE, 2024.

[21] Tairan He, Zhengyi Luo, Xialin He, Wenli Xiao, Chong

Zhang, Weinan Zhang, Kris M Kitani, Changliu Liu,

and Guanya Shi. OmniH2O: Universal and Dexter-

ous Human-to-Humanoid Whole-Body Teleoperation and

Learning. In Conference on Robot Learning, pages 1516–

1540. PMLR, 2025.

[22] Joey Hejna, Chethan Anand Bhateja, Yichen Jiang, Karl

https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2407.07726
https://arxiv.org/abs/2407.07726
https://arxiv.org/abs/2503.14734
https://arxiv.org/abs/2503.14734
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2506.07339
https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2212.06817
https://ieeexplore.ieee.org/document/933002
https://ieeexplore.ieee.org/document/933002
https://github.com/huggingface/lerobot
https://github.com/huggingface/lerobot
https://arxiv.org/abs/2505.15558
https://arxiv.org/abs/2505.15558
https://arxiv.org/abs/2506.18088
https://arxiv.org/abs/2506.18088
https://arxiv.org/abs/2506.18088
https://arxiv.org/abs/2402.10329
https://arxiv.org/abs/2402.10329
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/1910.11215
https://arxiv.org/abs/1910.11215
https://arxiv.org/abs/2409.17146
https://arxiv.org/abs/2409.17146
https://arxiv.org/abs/2506.21628
https://arxiv.org/abs/2506.21628
https://arxiv.org/abs/2506.21628
https://arxiv.org/abs/2408.11812
https://arxiv.org/abs/2408.11812
https://arxiv.org/abs/2408.11812
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2405.12213
https://arxiv.org/abs/2405.12213
https://arxiv.org/abs/2407.00278
https://arxiv.org/abs/2407.00278
https://arxiv.org/abs/2403.04436
https://arxiv.org/abs/2403.04436
https://arxiv.org/abs/2406.08858
https://arxiv.org/abs/2406.08858
https://arxiv.org/abs/2406.08858

Pertsch, and Dorsa Sadigh. ReMix: Optimizing Data

Mixtures for Large Scale Imitation Learning. In Confer-

ence on Robot Learning, pages 145–164. PMLR, 2025.

[23] Physical Intelligence, Kevin Black, Noah Brown, James

Darpinian, Karan Dhabalia, Danny Driess, Adnan Es-

mail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al.

π0.5:a Vision-Language-Action Model with Open-World

Generalization. arXiv preprint arXiv:2504.16054, 2025.

[24] Tobias Jülg, Pierre Krack, Seongjin Bien, Yannik Blei,

Khaled Gamal, Ken Nakahara, Johannes Hechtl, Roberto

Calandra, Wolfram Burgard, and Florian Walter. Robot

Control Stack: A Lean Ecosystem for Robot Learning at

Scale. arXiv preprint arXiv:2509.14932, 2025.

[25] Simar Kareer, Karl Pertsch, James Darpinian, Judy Hoff-

man, Danfei Xu, Sergey Levine, Chelsea Finn, and

Suraj Nair. Emergence of Human to Robot Trans-

fer in Vision-Language-Action Models. arXiv preprint

arXiv:2512.22414, 2025.

[26] Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ash-

win Balakrishna, Sudeep Dasari, Siddharth Karam-

cheti, Soroush Nasiriany, Mohan Kumar Srirama,

Lawrence Yunliang Chen, Kirsty Ellis, et al. DROID:

A large-scale in-the-wild robot manipulation dataset. In

Robotics: Science and Systems, 2024.

[27] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted

Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov,

Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al.

OpenVLA: An Open-Source Vision-Language-Action

Model. In Conference on Robot Learning, pages 2679–

2713. PMLR, 2025.

[28] Vikash Kumar, Rutav Shah, Gaoyue Zhou, Vincent

Moens, Vittorio Caggiano, Abhishek Gupta, and Aravind

Rajeswaran. Robohive: A unified framework for robot

learning. Advances in Neural Information Processing

Systems, 36:44323–44340, 2023.

[29] Obin Kwon, Sankalp Yamsani, Noboru Myers, Sean

Taylor, Jooyoung Hong, Kyungseo Park, Alex Alspach,

and Joohyung Kim. PAPRLE (Plug-And-Play Robotic

Limb Environment): A Modular Ecosystem for Robotic

Limbs. arXiv preprint arXiv:2507.05555, 2025.

[30] Obin Kwon, Sankalp Yamsani, Noboru Myers, Sean

Taylor, Jooyoung Hong, Kyungseo Park, Alex Alspach,

and Joohyung Kim. Paprle: Plug-and-play robotic limb

environment: A modular ecosystem for robotic limbs.

IEEE Robotics & Automation Magazine, 2026.

[31] Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan,

Huayu Chen, Zhengyi Wang, Ke Xu, Hang Su, and

Jun Zhu. RDT-1B: a Diffusion Foundation Model for

Bimanual Manipulation. In The Thirteenth International

Conference on Learning Representations, 2025.

[32] Yunchao Ma, Yizhuang Zhou, Yunhuan Yang, Tiancai

Wang, and Haoqiang Fan. Running vlas at real-time

speed. arXiv preprint arXiv:2510.26742, 2025.

[33] Steven Macenski, Tully Foote, Brian Gerkey, Chris

Lalancette, and William Woodall. Robot operating sys-

tem 2: Design, architecture, and uses in the wild. Science

robotics, 7(66):eabm6074, 2022.

[34] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale.

Yarp: yet another robot platform. International Journal

of Advanced Robotic Systems, 3(1):8, 2006.

[35] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Al-

wala, Dhiraj Gandhi, Lerrel Pinto, Saurabh Gupta, and

Abhinav Gupta. Pyrobot: An open-source robotics frame-

work for research and benchmarking. arXiv preprint

arXiv:1906.08236, 2019.

[36] Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Ab-

hishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn

Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain,

et al. Open x-embodiment: Robotic learning datasets

and rt-x models: Open x-embodiment collaboration 0.

In 2024 IEEE International Conference on Robotics and

Automation (ICRA), pages 6892–6903. IEEE, 2024.

[37] Younghyo Park and Pulkit Agrawal. Using apple vision

pro to train and control robots, 2024. URL https://github.

com/Improbable-AI/VisionProTeleop.

[38] Sabela Ramos, Sertan Girgin, Léonard Hussenot, Damien

Vincent, Hanna Yakubovich, Daniel Toyama, Anita

Gergely, Piotr Stanczyk, Raphael Marinier, Jeremiah

Harmsen, et al. Rlds: an ecosystem to generate, share

and use datasets in reinforcement learning. arXiv preprint

arXiv:2111.02767, 2021.

[39] starVLA Community. StarVLA: A Lego-like Codebase

for Vision-Language-Action Model Developing, January

2026. URL https://github.com/starVLA/starVLA.

[40] Gemini Robotics Team, Saminda Abeyruwan, Joshua

Ainslie, Jean-Baptiste Alayrac, Montserrat Gonzalez

Arenas, Travis Armstrong, Ashwin Balakrishna, Robert

Baruch, Maria Bauza, Michiel Blokzijl, et al. Gemini

robotics: Bringing ai into the physical world. arXiv

preprint arXiv:2503.20020, 2025.

[41] RDT Team. Rdt2: Enabling zero-shot cross-embodiment

generalization by scaling up umi data, September 2025.

URL https://github.com/thu-ml/RDT2.

[42] Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan

Vuong, Chongyi Zheng, Philippe Hansen-Estruch, An-

dre Wang He, Vivek Myers, Moo Jin Kim, Max Du,

et al. Bridgedata v2: A dataset for robot learning at

scale. In Conference on Robot Learning, pages 1723–

1736. PMLR, 2023.

[43] J Wang, M Leonard, K Daniilidis, D Jayaraman, and

ES Hu. Evaluating pi0 in the Wild: Strengths,

Problems, and the Future of Generalist Robot

Policies, 2025. URL https://penn-pal-lab.github.io/

pi0-Experiment-in-the-Wild.

[44] Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin

Tang, Kun Wu, Zhiyuan Xu, Ning Liu, Ran Cheng,

Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient

vision-language-action models for robotic manipulation.

IEEE Robotics and Automation Letters, 2025.

[45] Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che,

Xiaozhu Ju, Zhuqin Yang, Meng Li, Yinuo Zhao,

Zhiyuan Xu, Guang Yang, et al. Robomind: Benchmark

https://arxiv.org/abs/2408.14037
https://arxiv.org/abs/2408.14037
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2509.14932
https://arxiv.org/abs/2509.14932
https://arxiv.org/abs/2509.14932
https://arxiv.org/abs/2512.22414
https://arxiv.org/abs/2512.22414
https://arxiv.org/abs/2403.12945
https://arxiv.org/abs/2403.12945
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2507.05555
https://arxiv.org/abs/2507.05555
https://arxiv.org/abs/2507.05555
https://arxiv.org/abs/2410.07864
https://arxiv.org/abs/2410.07864
https://arxiv.org/abs/2211.07752
https://arxiv.org/abs/2211.07752
https://arxiv.org/abs/1906.08236
https://arxiv.org/abs/1906.08236
https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/2310.08864
https://github.com/Improbable-AI/VisionProTeleop
https://github.com/Improbable-AI/VisionProTeleop
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2504.16054
https://github.com/starVLA/starVLA
https://arxiv.org/abs/2503.20020
https://arxiv.org/abs/2503.20020
https://github.com/thu-ml/RDT2
https://arxiv.org/abs/2308.12952
https://arxiv.org/abs/2308.12952
https://penn-pal-lab.github.io/pi0-Experiment-in-the-Wild
https://penn-pal-lab.github.io/pi0-Experiment-in-the-Wild
https://penn-pal-lab.github.io/pi0-Experiment-in-the-Wild
https://penn-pal-lab.github.io/pi0-Experiment-in-the-Wild
https://penn-pal-lab.github.io/pi0-Experiment-in-the-Wild
https://arxiv.org/abs/2409.12514
https://arxiv.org/abs/2409.12514
https://arxiv.org/abs/2412.13877

on multi-embodiment intelligence normative data for

robot manipulation. arXiv preprint arXiv:2412.13877,

2024.

[46] Philipp Wu, Yide Shentu, Zhongke Yi, Xingyu Lin, and

Pieter Abbeel. Gello: A general, low-cost, and intuitive

teleoperation framework for robot manipulators. In 2024

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 12156–12163. IEEE, 2024.

[47] Wei Wu, Fan Lu, Yunnan Wang, Shuai Yang, Shi Liu,

Fangjing Wang, Qian Zhu, He Sun, Yong Wang, Shuailei

Ma, et al. A Pragmatic VLA Foundation Model. arXiv

preprint arXiv:2601.18692, 2026.

[48] Bin Xie, Erjin Zhou, Fan Jia, Hao Shi, Haoqiang Fan,

Haowei Zhang, Hebei Li, Jianjian Sun, Jie Bin, Jun-

wen Huang, Kai Liu, Kaixin Liu, Kefan Gu, Lin Sun,

Meng Zhang, Peilong Han, Ruitao Hao, Ruitao Zhang,

Saike Huang, Songhan Xie, Tiancai Wang, Tianle Liu,

Wenbin Tang, Wenqi Zhu, Yang Chen, Yingfei Liu,

Yizhuang Zhou, Yu Liu, Yucheng Zhao, Yunchao Ma,

Yunfei Wei, Yuxiang Chen, Ze Chen, Zeming Li, Zhao

Wu, Ziheng Zhang, Ziming Liu, Ziwei Yan, and Ziyu

Zhang. Dexbotic: Open-Source Vision-Language-Action

Toolbox. arXiv preprint arXiv:2510.23511, 2025.

[49] Mengda Xu, Han Zhang, Yifan Hou, Zhenjia Xu, Linxi

Fan, Manuela Veloso, and Shuran Song. DexUMI:

Using Human Hand as the Universal Manipulation In-

terface for Dexterous Manipulation. arXiv preprint

arXiv:2505.21864, 2025.

[50] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and

Lucas Beyer. Sigmoid loss for language image pre-

training. In Proceedings of the IEEE/CVF international

conference on computer vision, pages 11975–11986,

2023.

[51] Tony Zhao, Vikash Kumar, Sergey Levine, and Chelsea

Finn. Learning Fine-Grained Bimanual Manipulation

with Low-Cost Hardware. In Robotics: Science and

Systems XIX, 2023.

[52] Jinliang Zheng, Jianxiong Li, Zhihao Wang, Dongxiu

Liu, Xirui Kang, Yuchun Feng, Yinan Zheng, Jiayin Zou,

Yilun Chen, Jia Zeng, et al. X-vla: Soft-prompted trans-

former as scalable cross-embodiment vision-language-

action model. arXiv preprint arXiv:2510.10274, 2025.

[53] Zhengbang Zhu, Minghuan Liu, Xiaoshen Han, and

Zhengshen Zhang. Maniunicon: A unified control in-

terface for robotic manipulation, 2025. URL https:

//github.com/Universal-Control/ManiUniCon.

https://arxiv.org/abs/2412.13877
https://arxiv.org/abs/2412.13877
https://arxiv.org/abs/2309.13037
https://arxiv.org/abs/2309.13037
https://arxiv.org/abs/2601.18692
https://arxiv.org/abs/2510.23511
https://arxiv.org/abs/2510.23511
https://arxiv.org/abs/2505.21864
https://arxiv.org/abs/2505.21864
https://arxiv.org/abs/2505.21864
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2510.10274
https://arxiv.org/abs/2510.10274
https://arxiv.org/abs/2510.10274
https://github.com/Universal-Control/ManiUniCon
https://github.com/Universal-Control/ManiUniCon

APPENDIX

A. Dynamic tasks with diffusion policy

To validate RIO’s ability to support high-frequency policy

rollouts, we chose two dynamic tasks as a case study. Note

that we train Diffusion Policy (DP) rather than VLAs, as the

latter struggle to produce precise, fast action chunks.

• Ball Throwing: where the robot picks up a ball and throws

it into a container.

• Tortilla flipping: where the robot must grasp a bowl

containing a tortilla and move it such that the tortilla

flips over.

We collect 50 teleoperated demonstrations using GELLO at

80 Hz. Table V shows the success rate across 20 trials; DP is

able to achieve 66.7% for the flipping task and 100% for the

throwing.

Fig. 9: Dynamic tasks We show keyframes from successful

DP rollouts on the chosen tasks.

B. Code specifics

Template node. Our Node implementation is inspired by

Diffusion Policy [12] and UMI [11], with a main loop that

publishes state through a ring_buffer and processes re-

quests received through a request_queue. For RIO, we

provide code for a template node in Figure 12, which users

can copy from to quickly implement new Nodes, such as to

for a different robot or teleoperation interface. To support

a range of middleware with seamless switching between

them, we construct Nodes via factory functions that dynam-

ically inherit from any middleware class that implements

“publish/request” functionality. These factory functions can

produce pairs of client and server nodes to automatically

handle the “subscribe/response” protocol. Each middleware

creates its own ring_buffer and request_queue based

on example_data and example_request, along with

internal functionality for message passing, that is abstracted

away from the user.

Main Loop Example. RIO streamlines robot control de-

velopment by generating matched Server and Client pairs

from a single station configuration dataclass. The factory func-

tion introspects configuration fields and their corresponding

configurations, dynamically imports modules, and instantiates

node factories. Servers are launched in parallel using the

server manager, while clients connect through the configured

middleware layer. Robot and camera nodes can be optionally

aggregated into an environment class that exposes Gym-

style methods reset(), step(), get_state()), with the

embodiment type automatically inferred from available com-

ponents. Peripheral nodes not wrapped by the environment,

such as teleoperation devices or visualizers, remain accessible

via their configuration keys.

Within the main loop, users call node API methods directly,

which internally leverage ring buffers and request queues for

asynchronous interprocess communication. This architecture

decouples timing constraints: servers publish sensor data and

process commands at their native frequencies, while the con-

trol loop samples and issues commands at its own rate without

blocking. The consistent pattern across applications enables

rapid prototyping of teleoperation, policy deployment, and data

collection workflows.

from rio import time

from rio.envs.factory import make_env

from rio.middleware import ServerManager

Factory function to create servers, clients,

and environment based on configuration↪→

servers, clients, env = make_env(cfg)

Starts the servers with the desired middleware

with ServerManager(cfg.mw,

list(servers.values())):↪→

Start clients

with (

env,

clients["teleop"]() as teleop,

):

while True:

Query client APIs, all non-blocking

cmd = teleop.poll()

action = env.build_action(cmd)

obs = env.step(action)

time.precise_wait()

Fig. 10: Example of a main loop with RIO. Factory

functions instantiate environments and custom clients from a

single configuration file. Dynamic Inheritance forwards each

component to the chosen middleware; once servers and clients

are initialized, method calls pass through the storage structures

(queues and ring buffers), avoiding blocking operations in the

main loop.

The Embodiment Abstraction and State Reporting RIO

introduces an embodiment abstraction layer that aggregates

hardware-specific clients into coherent robot morphologies.

The Base Embodiment class defines a common interface

with methods for state retrieval, command execution, and

action parsing. Concrete implementations such as SingleArm

combine an arm client with an optional gripper and hand

clients, while Bimanual pairs two arms with their respective

end-effectors. During environment initialization, the factory

function introspects each embodiment class’s constructor sig-

nature and automatically matches required parameters against

available clients from the station configuration. This design

enables seamless transitions between different robot setups,

from a single xArm to a dual-arm SO-100 configuration,

without modifying application logic.

from ..schema import Observation

@dataclass

class BimanualObs(Observation):

Left arm (arm1)

arm1_proprio_eef: np.ndarray | None = None

arm1_proprio_joints: np.ndarray | None = None

gripper1_position: float | None = None

hand1_pose: np.ndarray | None = None

hand1_joints: np.ndarray | None = None

Right arm (arm2)

arm2_proprio_eef: np.ndarray | None = None

arm2_proprio_joints: np.ndarray | None = None

gripper2_position: float | None = None

hand2_pose: np.ndarray | None = None

hand2_joints: np.ndarray | None = None

@dataclass

class SingleArmObs(Observation):

proprio_eef: np.ndarray | None = None

proprio_joints: np.ndarray | None = None

gripper_position: float | None = None

hand_pose: np.ndarray | None = None

hand_joints: np.ndarray | None = None

Fig. 11: Example of observation schema. Morphology-

specific schemas extend a common base structure, enabling

standardized state reporting across different robot configura-

tions.

Each embodiment defines a dedicated observation structure

that extends a common base schema, ensuring standardized

data representation across morphologies. The embodiment

queries all component states and camera data, returning a

structured observation object, which is then wrapped into a

step structure containing the timestep, instruction, observation,

action, and metadata fields. This unified schema provides a

consistent interface for downstream consumers such as policy

networks, data recorders, and visualization tools, regardless of

the underlying hardware configuration.

import numpy as np

from .. import time

from ..middleware import ClientFactory,

ServerFactory↪→

from ..node import Node

class Template(Node):

__api__ = ["get_state", "send_req"]

__pub__ = True

__req__ = True

def __init__(self, dtype=np.float32, *, freq:

int = 100, **kwargs):↪→

self.dtype = dtype

super().__init__(freq=freq, **kwargs)

def __post_init__(self):

self.example_data = {

"state": np.array(...,

dtype=self.dtype),↪→

"timestamp": time.now()}

self.example_request = {"value":

np.array(..., dtype=self.dtype)}↪→

self.run = self.pubreq

super().__post_init__()

def pubreq(self):

rate = time.Rate(self.freq)

self.pub_ready_event.set()

self.req_ready_event.set()

while not self.exit_event.is_set():

Publish state

data = {"state": 0.0, "timestamp":

time.now()}↪→

self.ring_buffer.put(data)

Fetch requests

reqs = self.request_queue.get_all()

for req in reqs:

Handle request...

rate.precise_sleep()

def get_state(self, k=None, out=None):

return (

self.ring_buffer.get(out=out)

if k is None

else self.ring_buffer.get_last_k(k=k,

out=out)↪→

)

def send_req(self, value):

self.request_queue.put({"value": value})

def TemplateServer(mw, *args, **kwargs):

return ServerFactory(mw, Template, *args,

**kwargs)↪→

def TemplateClient(mw, *args, **kwargs):

return ClientFactory(mw, Template, *args,

**kwargs)↪→

Fig. 12: Template node. Nodes are constructed with a fac-

tory function by dynamic inheritance from any middleware

class that implements publish/request functionality, allowing

for seamless switching between different middlewares. Paired

client-server nodes automatically handle subscribe/response.

Table V: Policy deployment for dynamic tasks (Diffusion Policy). We showcase that RIO can successfully roll out challenging

dynamic tasks, achieving competent success rates across 20 demonstrations on a throwing and a flipping task. We also showcase

that we can do so without a significant slowdown compared to the average demonstration time in the finetuning set.

Robot Policy Task
Success

Rate (%)
Task Completion

Time (s)
Demo

Time (s)
RAM
(GB)

CPU
(%)

GPU
Util (%)

GPU
Mem (%)

xArm7 BC DP Flip Tortilla 66.7 12.36 ± 2.57 7.59s ± 0.79 17.2 ± 0.1 8.8 ± 1.9 8.6 ± 3.7 9.3 ± 0.4

xArm7 BC DP Throw Ball 100.0 14.73 ± 1.28 13.26 ± 2.23 15.8 ± 0.8 6.8 ± 0.1 0.6 ± 0.8 9.1 ± 0.6

	Introduction
	Related Works
	Generalist robot policies
	Cross-embodiment robot data
	Robot control stacks

	Robot I/O (RIO)
	Design Philosophy
	Nodes and Middlewares
	Robot Stations
	Teleoperation and Data Collection
	Policy Inference

	Evaluation
	Policy Finetuning and Deployment
	Performance Analysis

	Conclusion
	Dynamic tasks with diffusion policy
	Code specifics

